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Abstract

During tokamak start-up and disruptions, strong electric fields can arise which
are sufficient to cause electron runaway, whereby electrons are accelerated
continuously. In future large-current tokamaks, such as ITER and SPARC,
significant runaway electron generation is expected. Should the runaway
electron beam come in contact with the tokamak wall, its energy can be almost
instantly deposited into the wall. After a disruption, a considerable fraction
of the plasma current could be carried by relativistic electrons, which could
seriously damage the device. Start-up runaway electrons also risk causing
damage to the tokamak, but can also impede the plasma initiation. Electron
runaway is one of the major unsolved challenges in the development of fusion as
a viable source of energy. This thesis focuses on accurate modelling of tokamak
start-up and disruptions as well as the optimization of disruption mitigation,
centering especially around runaway electrons.

The simulation tool Stream has been developed for studying runaway
electrons during the burn-through and ramp-up phases of tokamak start-up.
Stream uses a 0D plasma model, where the densities, currents, temperatures
and electric field are evolved self-consistently. The runaway electron evolution
is governed by Dreicer and avalanche generation, as well as particle transport.
Using Stream, it was found that Dreicer generation plays a crucial role for
start-up runaway dynamics, and can even dominate the runaway generation.

Fluid and kinetic modelling of the runaway seed generation during tokamak
disruptions have been compared. It was found that the two models can
give significantly different predictions of the runaway evolution. The largest
difference found concerned the hot-tail generation, as the neglect of radial
transport in the fluid model caused a significant overestimation of the runaway
generation rate. Kinetic modelling of the seed generation was thus found to be
preferable, despite the increased computational cost.

Disruption optimizations for both ITER and SPARC were performed, fo-
cused on minimizing heat loads, electromechanical forces and the runaway
current. More specifically, the injected densities of deuterium and noble gases
during massive material injection were optimized. For ITER, simultaneous
minimization of all three objectives was found to be possible only in pure
deuterium plasmas. During activated operation, low runaway currents always
correlated with large transported heat losses. For SPARC, successful mitigation
was found to be feasible in deuterium-tritium plasmas as well.

Keywords: Plasma physics, fusion, tokamak, runaway electrons, start-up,
disruption mitigation
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Chapter 1

Introduction

As our society progresses and we raise the standard of living around the world,
our energy consumption will also increase [1]. In order to maintain this positive
progression, our energy production needs to be sustainable to use long term.
Today, our main forms of energy production generate unacceptable levels of
green house gas emissions or long-lived nuclear waste. One of the greatest
challenges of the 21st century is to develop reliable sources of energy which
can cover our increasing energy needs without burdening the environment. A
potential candidate for such an energy source is nuclear fusion, namely utilizing
the release of energy from two lighter nuclei fusing into one.

Nuclear fusion power plants would use the heavy hydrogen isotopes deu-
terium and tritium as fuel. Deuterium can be found in water and is abundant in
our oceans, while tritium can be produced from lithium, which can be sourced
from both land-based reserves and the ocean. This, combined with the high
energy to fuel mass ratio, means that nuclear fusion can theoretically provide
us with sustainable energy for thousands to millions of years [2].

The main by-product of the fusion reaction is the stable isotope helium-4,
meaning there would be no significant green house gas emissions [2]. In terms of
harmful by-products, the walls will be activated by the neutron emitted during
the fusion reaction, but the radioactive material would be short-lived. For
fusion reactors, the storage requirements would thus be more relaxed compared
to those for the nuclear waste of fission reactors. Furthermore, it would be a
non-intermittent energy source since it is not dependent on any fluctuating
and unpredictable factor such as the weather [3]. Consequently, fusion would
be an ideal source of energy if its development succeeds.

Although nuclear fusion is a prevalent phenomenon in our universe, as it is
the energy source that powers the sun and the stars, creating the conditions
necessary to produce significant levels of fusion energy in an artificial environ-
ment is complicated. Notably, the fuel has to be heated to more than hundreds
of million degrees in order for the fusion reaction to occur with high enough
frequency [2], and at such temperatures the atoms of the fuel separates into
ions and free electrons – the fuel is in the plasma phase. This introduces the

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: In the presence of a homogeneous and static magnetic field, a
charged particle (black) gyrates around a magnetic field line (orange).

first problem of achieving fusion – confining the fuel for long enough periods of
time to produce significant levels of energy.

One of the most widely researched solutions for this is the tokamak, which
is a machine that uses magnetic fields to confine the heated fuel in the shape
of a torus. The characteristic feature of the tokamak is that it produces the
necessary magnetic field by combining magnetic field coils with a large current
driven through the plasma [4]. The plasma current is crucial for the confinement
of the fuel in a tokamak, but it does not come without complications – one of
them is the risk of producing relativistic electrons, so called runaway electrons,
capable of damaging the machine itself [5]. Significant generation of runaway
electrons can occur either during the plasma current ramp-up (start-up of the
tokamak) or during sudden plasma terminating events (disruption). How to
mitigate or avoid the generation of runaway electrons in tokamaks is considered
one of the most critical, unresolved problems of the tokamak concept.

1.1 Basic plasma physics

A plasma is defined as a macroscopically neutral gas consisting of charged
particles, where the particle dynamics are governed by both short- and long-
range particle interactions [6]. Locally, the particle dynamics are affected
by collisions with other particles, but long-range forces arise from the elec-
tromagnetic fields of the charged particles, and the dynamics is also heavily
influenced by externally applied fields. In the presence of an electric field E
and a magnetic field B, a particle of charge q and velocity v experiences the
Lorentz force

F = q (E + v ×B) . (1.1)

If there is only an electric field present, the charged particle is accelerated
parallel to the electric field. On the other hand, if the charged particle is only
in the presence of a homogeneous and static magnetic field, it gyrates around
the magnetic field line with constant speed, according to the second term in
(1.1). More specifically, the charged particle follows a helical orbit with the
guiding centre, namely the line traced out by the centre of the circular motion,
aligned with the magnetic field line, see figure 1.1. The radius of this circular
motion is called the Larmor radius, given by

rL =
mv⊥
|q|B , (1.2)
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⊙

Figure 1.2: As a charged particle travels through a region of higher and of lower
magnetic field strength, it drifts due to the difference in Larmor radius of its
circular orbit in the two different regions – note the vertical displacement of the
guiding centre (orange dot). The direction of the magnetic field is orthogonal
to the plotted plane.

with m and v⊥ being the mass and perpendicular speed of the particle, and B
being the strength of the magnetic field.

However, if the charged particle is affected both by a magnetic field and
some other force, e.g. an electric field, and if the two are not parallel, the
guiding centre drifts orthogonally to both the magnetic field and the force.
Magnetic field inhomogeneities or time-varying fields also cause the guiding
centre to drift. As a simplified illustration, if the guiding centre of a charged
particle would be located at the boundary between two regions of different
magnetic field strength, the Larmor radius would be smaller in the region
of higher magnetic field strength, which would cause the particle to drift in
accordance with figure 1.2.

The most accurate approach of modelling a plasma would be to consider the
dynamics of each particle in the plasma, accounting for all of the electromagnetic
forces acting on each particle at any given time, including the forces from the
electric fields of all other charged particles [6]. However, these single-particle
models are computationally intractable, since the numerical complexity of
modelling interactions of all particle pairs is proportional to (at least) N2,
where N is the number of particles, and for a typical fusion plasma N > 1020.

To make the problem tractable, one can model the plasma based on the
collective behaviour of the charged particles as a group, and the most fun-
damental such model is the kinetic plasma model. In the kinetic model, the
plasma is described statistically by a distribution function f(r,v, t). It is
defined such that f(r,v, t)drdv represents the number of particles within
the six-dimensional volume-element drdv in position and velocity space (or,
equivalently, momentum space). The evolution of the distribution function is
governed by the Boltzmann equation [6]

∂f

∂t
+ v ·∇f +

F

m
·∇vf =

(
∂f

∂t

)
c

, (1.3)



6 CHAPTER 1. INTRODUCTION

where (∂f/∂t)c is a collision operator and the force F can be replaced by the
Lorentz force in equation (1.1) if it is purely electromagnetic. The distribution
function gives a dense description the plasma, but more easily-interpretable
quantities can be obtained from the velocity moments of the distribution
function, such as [7]

Density: n(r, t) =

∫
f(r,v, t)dv, (1.4a)

Mean velocity: u(r, t) =
1

n

∫
vf(r,v, t)dv, (1.4b)

Temperature: T (r, t) =
2

3n

∫
m

2
|v − u|2f(r,v, t)dv. (1.4c)

The distribution function describing a non-relativistic plasma in local ther-
modynamic equilibrium is the Maxwell-Boltzmann distribution [6]

fM ∝
(

1√
πvth

)3

exp

(
− v2

v2th

)
. (1.5)

Here, the so called thermal speed vth = (2T/m)1/2 determines the width of
the distribution, where T (measured in units of energy, typically eV) is the
temperature of the particle species and m the particle mass.

The effect of collisions on the distribution function evolution is accounted
for using the collision operator, but a complete description encompassing all
forms of Coulomb interactions in a plasma is generally intractable. A commonly
used collision operator in fusion plasmas is the Fokker-Planck operator, which
assumes that the plasma dynamics are dominated by long-range Coulomb
collisions, which only cause small relative changes of the respective velocities.
The resulting equation is known as the Fokker-Planck equation, and it describes
the effect of collisions on particle species i with [7, 8](

∂f

∂t

)i

c

=
∑
j

∂

∂v
·
[
−Aijf + Dij · ∂f

∂v

]
, (1.6)

where the sum runs over all particle species j. Here Aij represents the average
force felt by a particle of species i due to collisions with particles of species j,
and Dij is a diffusion tensor [7].

A less accurate but computationally much more efficient approach is to
integrate over the details of the phase space dynamics and treat them as
fluids. The fluid model simplifies the kinetic theory, using velocity moments, to
describe the plasma constituents by fluid quantities (see (1.4)) and govern the
evolution by a set of so called fluid equations [6]. Using a fluid model greatly
reduces the complexity found in the kinetic model – the kinetic model describes
up to six dimensions while the fluid model considers at most three – but the
detailed description of processes in the velocity space is lost.
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Figure 1.3: Illustration of the tokamak geometry. Commonly, a toroidal
coordinate system is used for tokamaks, with the minor radius r, and the
poloidal and toroidal angle coordinates θ and φ. Additionally, the toroidal
coordinate forms a cylindrical coordinate system together with the major radial
coordinate R and vertical coordinate Z. The coloured torus surfaces represent
nested flux surfaces. The twist of the magnetic field lines is illustrated by the
white curves on the outermost flux surface.

1.2 Tokamak concept

One of the most promising fusion reactor concepts is the tokamak, which uses
magnetic fields to confine the fusion plasma. External magnetic field coils create
a toroidal magnetic field with the purpose of guiding the charged particles
around the tokamak in confined loops. The plasma is thus in the shape of
a torus, as illustrated in figure 1.3. However, such a magnetic field exhibits
spatial inhomogeneities, and the strength of this field approximately varies
as 1/R [4], causing vertical drifts of the particles and, without any additional
measures taken, intolerable particle losses. The direction of the drift due to
the spatial gradients in a tokamak only depends on the charge of the particle,
and since the charge of the particle does not change, neither does the direction
of the drift [4]. Consequently, the direction of this vertical drift is the same on
both the upper and lower halves of the plasma torus.

One simple solution to this problem of particle losses caused by the spatial
magnetic field gradients is to introduce a poloidal magnetic field, which allows
the magnetic field lines to be twisted around the torus, as illustrated by the
white lines on the outer (blue) surface of figure 1.3. Notably, in a tokamak, the
poloidal field is weaker than the toroidal field. If the particle drifts away from
the plasma column in the upper half of the plasma torus, it drifts towards the
plasma column on the lower half and these drifts cancel out as the particle
moves along the twisted magnetic field. In a tokamak the poloidal magnetic
field is produced by driving a toroidal plasma current of several mega-amperes
through the plasma.
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∆(a)

a

b

a
κ

(a
)

a sin δ(a)

Figure 1.4: Shaping parameters for a tokamak; elongation κ(r), triangularity
δ(r) and Shafranov shift ∆(r) evaluated at the flux surface at r = a. The
increasingly elongated and triangular oval shapes are nested flux surfaces, and
the degenerate flux surface at r = 0 is marked with a black dot. The blue cross
marks the centre of the outermost (blue) flux surface, with radius a (plasma
minor radius). The gray cross marks the centre of the tokamak wall (gray),
with wall radius b.

The twisted magnetic field lines trace out closed toroidal surfaces, so called
flux surfaces [4]. In figure 1.3, nested flux surfaces are illustrated as the nested,
coloured toroidal surfaces. The degenerate flux surface, located at r = 0, is
called the magnetic axis. From the flux surfaces and magnetic axis we can
define two characteristic geometric parameters for a tokamak – the major radius
R0 which is the distance between the vertical symmetry axis and the magnetic
axis, as well as the minor radius a which is the radius of the outermost (closed)
flux surface.

In practice, most tokamak plasmas do not have a circular cross section.
Typically, the cross section shape of the flux surfaces is more triangular and
vertically elongated compared to a circle. The actual flux surface geometry may
be parametrized by the so called shaping parameters, which are illustrated in
figure 1.4 together with the plasma minor radius a and wall radius b. Elongation
is described by κ(r) and triangularity by δ(r) – both of these are dimensionless
quantities [9]. In this thesis, the Shafranov shift ∆(r) describes the horizontal
displacement of the centre of a flux surface from the magnetic axis [4].

Tokamak start-up

The start-up of a tokamak can be divided into three phases – breakdown,
burn-through and current ramp-up. Before initializing the breakdown phase,
the vacuum chamber is filled with the plasma fuel at a predetermined density
– the prefill density – or equivalently, at a predetermined pressure – prefill
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pressure. A strong electric field is applied in the tokamak chamber, causing free
electrons in the chamber to be accelerated. When the electrons have obtained
enough energy (namely > 13.6 eV), they can ionize atoms through collisions.
The breakdown phase depends on there being an exponential increase in the
number of free electrons produced by free electrons colliding with atoms – this
process is called the Townsend avalanche [10]. In order for the breakdown
to be successful, the prefill density must be high enough so that there are
enough target atoms for the electrons to collide with, to cause this exponentially
increasing free electron density. However, if the prefill density is too high, or
the electric field is insufficient, the free electrons will not gain enough energy
before the collision to ionize the atom, meaning that the breakdown fails.

The ionization process is continued during the burn-through phase. At
this point it is important for the heating of the plasma to be greater than
the heat losses due to the ionization work and the collisional radiation [11].
Supplementary heating can then be used to ensure continued ionization. As the
temperature in the plasma increases, the plasma resistivity decreases, leading
to the plasma current being ramped up.

Disruptions in tokamaks

During tokamak operation, there can be unwanted disruptions. These events
arise from instabilities in the plasma that cause a rapid loss of the plasma
thermal energy. More specifically, such events are caused by instabilities that
can be described by magnetohydrodynamics (MHD) [12]. MHD instabilities can
be triggered, for example, by high currents, densities or pressures in the plasma,
or by external causes associated with the tokamak hardware or operation [12].

Although disruptions can have a variety of causes, the macroscopic dis-
ruption evolution is qualitatively similar for most disruptions [4]. The typical
chain of events is illustrated in figure 1.5. Initially, the temperature of the
plasma decays rapidly, during what is called the thermal quench (TQ). For in-
stance, the MHD instability causes the tokamak magnetic field lines to become
stochastic (i.e. randomly wandering radially, instead of tracing out closed mag-
netic surfaces), causing heat to be transported to the inner tokamak wall [13].
Furthermore, the presence of impurities in the plasma can cause significant
radiative heat losses, which also contributes to the temperature decay. The
duration of the TQ is estimated to be ∼ 0.1ms for SPARC [14] and ∼ 1ms for
ITER [15].

Since the resistivity of the plasma ∝ T−3/2, the plasma current starts to
decay as a result of the thermal quench – this is the second phase of the
disruption, known as the current quench (CQ). The decay of the current is a
slower process than the temperature decay, for SPARC it is estimated to be
∼ 10ms and for ITER ∼ 100ms. An electric field is induced by the decaying
current, which can enable the generation of a significant current of relativistic
electrons, also called runaway electrons. If a significant runaway current is
generated and maintained, there is an additional phase of the disruption called
the runaway plateau.
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Figure 1.5: Illustration of the three important stages during a disruption.
Firstly, the temperature decays during the thermal quench (TQ). Subsequently,
and the plasma current decays during the current quench (CQ), which induces
an electric field enabling a significant runaway current to be generated. If a
significant runaway current is generated, it might reach a stable level during
the stage known as the runaway plateau.

1.3 Runaway electrons

In a tokamak, electrons are accelerated by electric fields and are slowed down
due to friction caused by collisions with other charged particles, i.e. Coulomb
collisions. The equation of motion of a non-relativistic electron parallel to the
magnetic field can be approximately written as

dv∥

dt
= − e

me
E∥ − νcv∥, (1.7)

where E∥ < 0 is the electric field component parallel to the magnetic field
and νc is the collision frequency. Notably, the collision frequency νc depends
non-monotonically on the velocity of the electron. As illustrated in figure
1.6, the friction force increases with speeds below the electron thermal speed
(vth =

√
2Te/me). However, for speeds above vth, the friction starts to decrease

with speed according to νc ∝ 1/v3. For a given electric field E∥, there is a
critical velocity vc such that

− e

me
E∥ = νcvc =⇒ dv∥

dt
= 0. (1.8)

Notably, for velocities above the critical velocity, the electric force becomes
larger than the collisional friction forces, resulting in continuous acceleration.
Electrons experiencing this kind of “unhindered”1 acceleration due to the
electric field are called runaway electrons and they are accelerated to relativistic
speeds.

1It is worth noting, however, that this continuous acceleration is not completely unhindered
– for very high velocities, it is limited by radiation effects (synchrotron and bremsstrahlung),
which need to be accounted for by extending (1.7).
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Figure 1.6: Illustration of the friction force due to Coulomb collisions on
electrons in a fusion plasma, as a function of velocity. Electrons with velocities
v > vc run away.

For a tokamak discharge, sufficiently strong electric fields are present es-
pecially during the tokamak start-up or during disruptions. During tokamak
start-up, a high electric field is applied to the initially neutral fuel gas in order
to initiate the plasma [16]. Notably, for successful plasma initiation, the initial
gas density needs to be relatively low, which correlates to low collisionality for
the electrons in the plasma, which in turn reduces the electric field strengths
needed for significant levels of runaway generation. On the other hand, during
plasma disruptions, an electric field is induced as the plasma current starts to
decay due to increased resistivity in the plasma. This induced electric field can
be large enough such that a current of runaway electrons of similar order of
magnitude as the original plasma current is generated, and survives even after
the rest of the plasma current has decayed [5].

The issue with runaway electrons in tokamaks is that they can cause serious
damage to the device [17]. A beam of runaway electrons can carry a large
fraction of the stored magnetic energy, and if this beam would collide with
the tokamak inner wall, it would deposit this energy in a localized area, which
could cause major damage both to the plasma facing components as well as to
structures behind the first wall tiles [17, 18].

In current tokamak experiments, runaway electrons are not considered a
major problem [5], but this is not true for future devices. Runaway electrons are
expected to pose a larger problem for future tokamaks because the avalanche
gain is exponentially sensitive to the size of the plasma current during the
discharge [19]. For reactor-scale tokamaks, the device size, and consequently the
plasma current necessary, need to be significantly larger than the experimental
devices that have been developed so far.

1.4 Thesis outline

In this thesis, we address the modelling and optimization of tokamak start-up
and disruptions, with particular consideration of runaway electrons. We cover
the different mechanisms of runaway generation in tokamaks in chapter 2 by
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describing the underlying physics and presenting analytical formulas for the
corresponding runaway generation rates. In chapter 3, we consider the context
of runaway electrons in fusion plasmas, and present the plasma models used for
studying runaway electrons during tokamak start-up and disruptions in this
work. Aside from describing how runaway electrons fit in to the broader picture
when modelling tokamak plasmas, we also present how the plasma evolution
is self-consistently determined. Special focus is given to the key differences
in modelling tokamak start-up and disruptions. Moving on to optimization,
chapter 4 presents what aspects need to be consider when optimizing disruption
mitigation. Furthermore, the optimization strategy used in this work, namely
Bayesian optimization, is described and its principal components are introduced.
Finally, the appended papers are summarized in chapter 5, where we highlight
the main results and consider possible areas of future research.



Chapter 2

Runaway electron
generation

Electrons with high enough energies are continually accelerated in the presence
of a sufficiently strong electric field, as noted by by C. T. R Wilson in 1925
when studying electrons in thunderclouds [20]. The phenomenon was named
electron runaway by A. S Eddington in 1926 [21]. Runaway electrons can
occur in many other circumstances, such as in solar flares [22] and in tokamak
discharges [16]. Regarding the latter, runaway electrons have been detected
since the very first tokamak experiments. In reactor-scale devices, runaway
electrons are expected to be generated during start-up and disruptions.

There are two specific electric field strength values, the Dreicer field and
the critical electric field, that are of particular importance for the dynamics
of runaway electrons. The Dreicer field describes the field strength needed for
electrons with v∥ ∼ vth – that is, the entire electron distribution – to run away
(see the top line of figure 2.1) [23], and is given by

ED =
e3ne ln Λ

4πϵ20Te
=

e3ne ln Λ

2πϵ20mev2th
, (2.1)

where ne is the electron density, and lnΛ is the Coulomb logarithm quantifying
the maximum impact parameter of Coulomb collisions [6]. More specifically,
all electrons run away if E∥ > 0.2ED.

On the other hand, the critical electric field

Ec =
e3ne ln Λ

4πϵ20mec2
=

Te
mec2

ED =
v2th
2c2

ED (2.2)

is the minimum electric field at which runaway electrons can exist (see the
bottom line of figure 2.1) – for lower electric fields the collisional forces are always
stronger than the Lorentz force. More specifically, equation (2.2) describes
the Connor-Hastie field, which is derived by solving the relativistic version of
equation (1.7) under the condition that the friction force is minimal [23].

13
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Figure 2.1: Illustration of the decelerating, or braking, force on electrons in a
fusion plasma, caused by Coulomb collisions, bremsstrahlung and synchrotron
radiation, and including effects from partial screening, as a function of velocity
(solid black). The friction force, caused by Coulomb collisions, excluding partial
screening effect is illustrated as the dashed gray curve. For all electrons to run
away, the electric field E∥ > 0.2ED (dotted yellow). When only the friction
force excluding partial screening is considered, runaway electrons can exist
above E∥ = Ec (dotted purple). If radiation and partial screening is also

accounted for, runaway electrons can exist above E∥ = Eeff
c (dotted red). Note

that this figure illustrates the qualitative behaviour of these forces, while the
scales and rate of change have been exaggerated.

The expression (2.2) does not account for radiation effects or partial screen-
ing, however. Partial screening is an effect connected to electron-ion interactions
in partially ionized plasmas. Fast electrons can penetrate the electron cloud
of the ion, and experience the ion as having a larger charge than the net
charge number – the charge of the ion nucleus is only partially screened by the
electron cloud. Bremsstrahlung and synchrotron radiation, as well as partial
screening effects, cause the decelerating force to increase for higher velocities,
as illustrated in figure 2.1. If these effects are considered, the effective critical
electric field Eeff

c instead represents the minimum electric field at which runaway
electrons can exist [24], which is illustrated as the middle line of figure 2.1.

The electric field is the driving force behind the runaway phenomenon, but
the generation of electrons which may run away can be caused by a number
of different mechanisms. In this chapter, we present the different generation
mechanisms relevant for fusion plasmas. The generation mechanisms can be
divided into two categories – primary and secondary generation – based on
whether the generation itself is dependent on the existence of runaways in the
plasma. Primary generation can occur if the electric field is strong enough,
and relevant primary generation mechanisms are Dreicer (see section 2.1) and
hot-tail (see section 2.2) generation, as well as generation from tritium beta
decay (see section 2.3) and Compton scattering (see section 2.4). If there are
already runaway electrons in the plasma, these can generate even more runaway
electrons through secondary generation, or more specifically, through avalanche
generation (see section 2.5), leading to an exponential increase in the number
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of runaway electrons. Primary generation is also commonly known as seed
generation, as it provides a seed of runaways that can initialize the substantial
growth of the runaway electron population through secondary generation.

2.1 Dreicer generation

In a plasma, thermal electrons are constantly colliding with each other, redis-
tributing their kinetic energy. These collisions act to maintain the electron
distribution at the thermal equilibrium, and if any “gaps” would appear in the
distribution, they would soon be filled through collisional diffusion. However,
as soon as the velocity of an electron is larger than the critical velocity (defined
in equation (1.8)), it runs away and is no longer part of the thermal bulk. This
leads to a continuous diffusive leak of electrons into the runaway region, and
this type of runaway electron generation is called Dreicer generation.

The most accurate analytical formula for the Dreicer generation rate was
derived by J. Connor and R. Hastie [23]. It was derived by solving the relativistic
Fokker-Planck equation using asymptotic techniques in the small parameter
E/ED, neglecting radiation effects and assuming that the plasma is fully ionized.
The generation rate is then obtained as(

∂nre
∂t

)
D

= C
ne
τee

(
E∥

ED

)− 3
16 (1+Zeff )h

exp

[
−λ
4

ED

E∥
−
√
η(1 + Zeff)

ED

E∥

]
,

(2.3a)

λ = 8

(
E∥

Ec

)2
[
1− 1

2

Ec

E∥
−
√
1− Ec

E∥

]
, (2.3b)

η =
1

4

E∥

Ec

1

1− Ec/E∥

[
π

2
− arcsin

(
1− 2

Ec

E∥

)]2
, (2.3c)

h =
1

3

1(
E∥/Ec

)
− 1

[
E∥

Ec
+ 2

(
E∥

Ec
− 2

)√
1

1− Ec/E∥
− Zeff − 7

Zeff + 1

]
.

(2.3d)

Here, the C is an order-unity parameter [25] and the thermal electron collision
time is

τee =
4πϵ20m

2
ev

3
th

nee4 ln Λ
, (2.4)

while the relativistic effects are included through the parameters λ, η and h,
which all tend to unity as E∥/Ec → ∞.

Notably, the Dreicer generation rate is monotonically increasing with, and
it is very sensitive to, the electric field, especially for low values of E∥/ED,

as γD ∝ exp
(
−λED/4E∥

)
. Thus, if E∥/ED can be maintained at a relatively

low value, significant Dreicer generation can be avoided, regardless of E∥/Ec,
at least on relatively short time scales. However, it is worth noting that
the expression (2.3) is not necessarily accurate in multi-component plasmas,
especially if the assumption of a fully ionized plasma is not valid [26, 27].
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Figure 2.2: Illustration of the hot-tail generation mechanism. (a) Initially, the
plasma is in thermal equilibrium, such that the electrons are described by a
Maxwellian distribution. (b) As the plasma cools, the distribution develops
a hot tail of fast electrons, which cool down slower than slow electrons due
to their low collisionality. Simultaneously, the electric field increases rapidly,
causing the critical momentum to decrease. (c) The hot tail runs away as the
critical momentum becomes sufficiently low.

2.2 Hot-tail generation

During rapid plasma cooling, fast electrons decelerate more slowly than slow
electrons, due to their lower collisionality. This results in the distribution
function being extended at higher momenta in a tail-like formation [28], which
is why this part of the electron population is often referred to as a hot tail –
see figure 2.2. If the electric field is rapidly increased, the critical momentum,
i.e. the lowest momentum required for an electron to run away, can be reduced
to values below this hot tail. Thus, parts of the hot tail can run away, which is
referred to as the hot-tail generation mechanism [29, 30].

As the mechanism driving hot-tail generation is the evolution of the distri-
bution function in a cooling plasma, an analytic expression used to estimate
the generation rate requires an estimation of the distribution function. Fol-
lowing the derivation in Ref. [31], if source and sink terms, inhomogeneous
spatial effects and spatial transport are neglected, the kinetic equation can be
formulated as

∂f

∂t
=

1

p2
∂

∂p

[
p2
(
−eE∥ξf + νspf +meTeγνs

∂f

∂p

)]
+

∂

∂ξ

[
−1− ξ2

p
eE∥f +

(
1− ξ2

) νD
2

∂f

∂ξ

]
.

(2.5)

Here, Te is the electron temperature, and νD and νs are the pitch angle scattering
and slowing down collision frequencies, respectively. This kinetic equation is
described in terms of the magnitude of the momentum p = |p|, with the Lorentz

factor γ =
√
p2 + 1, and the pitch ξ = p ·B/(pB). Using

1

p2
∂
(
p2ξf

)
∂p

=
2ξ

p
f+ξ

∂f

∂p
and

∂

∂ξ

(
1− ξ2

p
f

)
= −2ξ

p
f+

1− ξ2

p

∂f

∂ξ
, (2.6)
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this can be simplified to

∂f

∂t
= −eE∥

[
ξ
∂f

∂p
+

1− ξ2

p

∂f

∂ξ

]
+

1

p2
∂

∂p

[
νsp

3f +meTep
2γνs

∂f

∂p

]
+
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f
∂ξ

]
.

(2.7)

We introduce the (small) ordering parameter δ, defined such that that the
pitch angle collision frequency νD ∼ δ0, which is valid during strong pitch angle
scattering. For Te ≪ mec

2 ≈ 511 keV, the energy diffusion term, namely the
term with diffusion coefficient D ∝ Teνs, is negligible and can be ordered as
≲ δ2, while all other terms can be ordered as ∼ δ. Furthermore, the distribution
expanded with regard to this ordering parameter, i.e. f = f0 + δf1 +O(δ2),
yields the kinetic equation

∂f0
∂t

= −eE∥

[
ξ
∂f0
∂p

+
1− ξ2

p

∂f0
∂ξ

]
+

1

p2
∂

∂p

[
νsp

3f0
]

+
νD
2

∂

∂ξ

[(
1− ξ2

)(∂f0
∂ξ

+ δ
∂f1
∂ξ

)]
+O(δ2).

(2.8)

The kinetic equation (2.8) can now be separated with regard to order

δ0 : 0 =
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f0
∂ξ

]
, (2.9a)

δ1 :
∂f0
∂t

= −eE∥

[
ξ
∂f0
∂p

+
1− ξ2

p

∂f0
∂ξ

]
+

1

p2
∂

∂p

[
νsp

3f0
]

+
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f1
∂ξ

]
.

(2.9b)

Equation (2.9a) implies that the first order term of the distribution function
is isotropic in pitch-angle, i.e. ∂f0/∂ξ = 0, which when inserted into equation
(2.9b) yields

∂f0
∂t

= −eE∥ξ
∂f0
∂p

+
1

p2
∂

∂p

[
νsp

3f0
]
+
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f1
∂ξ

]
. (2.10)

Since we are interested in f0, which is independent of pitch angle, we can
average our kinetic equation over pitch-angle,

1

2

∫ 1

−1

∂f0
∂t

dξ =
∂f0
∂t

, (2.11a)

1

2

∫ 1

−1

eE∥ξ
∂f0
∂p

dξ = 0, (2.11b)

1

2

∫ 1

−1

1

p2
∂

∂p

[
νsp

3f0
]
dξ =

1

p2
∂

∂p

[
νsp

3f0
]
, (2.11c)

1

2

∫ 1

−1

νD
2

∂

∂ξ

[(
1− ξ2

)
δ
∂f1
∂ξ

]
dξ = 0, (2.11d)
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resulting in the reduced kinetic equation

∂f0
∂t

=
1

p2
∂

∂p

[
νsp

3f0
]
. (2.12)

In order to solve this reduced kinetic equation, we introduce the electron
collision time

τc =
4πϵ20m

2
ec

3

nee4 ln Λ
. (2.13)

Furthermore, the slowing down collision frequency can be expressed as [32]

νs =
1

τc

γ2

p3
, (2.14)

which when inserted into the kinetic equation (2.12) yields

∂f0
∂t

=
1

τc

1

p2
∂

∂p

[
γ2f0

]
. (2.15)

Assuming that τc varies slowly in time, such that the time dependence can be
neglected, and taking the non-relativistic limit (i.e. γ = 1), the general solution
to equation (2.15) is

f0 =
1

γ2
G(s) = G(s), (2.16)

for some function G(s), with

s(t, p) =

∫ p

0

(
p′

γ′

)2

dp′ +

∫ t

0

dt′

τc

=

∫ p

0

(p′)
2
dp′ +

∫ t

0

dt′

τc

=
p3

3
+

∫ t

0

dt′

τc
.

(2.17)

Initially, the plasma should be in thermal equilibrium, meaning that

G(s)

∣∣∣∣
t=0

=
ne

π3/2p2th,0
exp

(
− p2

p2th,0

)
(2.18a)

=⇒ G(s) =
ne

π3/2p2th,0
exp

(
− (3s)2/3

p2th,0

)
, (2.18b)

where pth,0 =
√
2Te0/mec2 is the initial thermal momentum normalized to

mec. This yields the final solution

f0(t, p) =
ne

π3/2p3th,0
exp

(
−
[
p3 + 3τ(t)

]2/3
p2th,0

)
, (2.19a)

τ(t) =

∫ t

0

dt′

τc
. (2.19b)
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As the runaway electron density is defined by the distribution function
moment according to

nre =

∫ ∞

pc(t)

f(t,p)d3p, (2.20)

the hot-tail generation rate can be obtained by differentiating this with regard
to time. Given the analytical expression for the leading order term of the
distribution function derived above, which is isotropic with regard to pitch
angle, we can simplify the evaluation of the generation rate. Importantly,
the assumption of strong pitch angle scattering is typically valid for electrons
with velocities below the critical velocity, as for these electrons, the collisions
dominate the dynamics over the effect of the electric field.

The critical momentum pc ≈
√
Ec/E∥ is here defined from the kinetic

equation as the momentum at which the electric field acceleration terms and
collisional friction are equal, and is thus a time dependent parameter. Assuming
that the effect of the electric field, while being a weaker effect than pitch angle
scattering (as we did in equation (2.9)), is stronger than remaining effects, it
can be included in the kinetic equation (2.15) as a diffusion term. The resulting
expression is derived in more detail in section 3.1, but with radial transport.
Thus, under these assumptions, the kinetic equation can be formulated as

∂f0
∂t

=
1

p2
∂

∂p

[
p2
(
−Apf0 +Dpp ∂f0

∂p

)]
(2.21)

instead. The critical momentum pc is then defined as

−Apf0 +Dpp ∂f0
∂p

∣∣∣∣
p=pc

= 0. (2.22)

Using the leading order term of the distribution function f0, the hot-tail
generation rate can be estimated from

nre = 4π

∫ ∞

pc(t)

p2f0(t,p)dp (2.23a)

=⇒ ∂nre
∂t

= −4πp2c
∂pc
∂t

f0(t, pc) + 4π

∫ ∞

pc

p2
∂f0
∂t

dp, (2.23b)

where pc can be evaluated from solving equation (2.22). The second term on
the right hand side of this expression is equal to zero, as∫ ∞

pc

p2
∂f0
∂t

dp =

∫ ∞

pc

∂

∂p

[
p2
(
−Apf0 +Dpp ∂f0

∂p

)]
dp

=

[
p2
(
−Apf0 +Dpp ∂f0

∂p

)]∞
pc

= p2c

(
−Apf0 +Dpp ∂f0

∂p

) ∣∣∣∣
pc

= 0.

(2.24)
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Thus, the hot-tail generation rate is obtained as(
∂nre
∂t

)
ht

= −4πp2c
∂pc
∂t

f0(t, pc), (2.25a)

f0(t, p) =
ne

π3/2p3th,0
exp

−

[
p3 + 3

∫ t

0
(1/τc) dt

′
]2/3

p2th,0

 . (2.25b)

This is recognized as the hot-tail generation rate since the driving mechanism
of this generation rate is the varying critical momentum, in accordance with
the hot-tail mechanism, and not collisional diffusion as for Dreicer generation.

2.3 Tritium beta decay

Tritium is a radioactive isotope with a half-life of 12 years, which decays through
beta-decay according to

T → 3
2He + ν̄e + e−. (2.26)

If this reaction occurs in a plasma, the electron runs away if it is emitted with
a velocity greater than the critical velocity. Generation of runaway electrons
from tritium beta decay will be relevant in fusion reactors, as tritium will be
used as fuel due to its relatively high cross section for fusion with deuterium.

During tritium beta decay, the emission of electrons follows the energy
spectrum described by [33]

fβ(W ) ∝
{
F (p, 2)pW(Wmax −W )2 for W ≤Wmax,

0 for W ≥Wmax,
(2.27a)∫ ∞

0

fβ(W )dW = 1, (2.27b)

with the momentum p normalized to mec, Lorentz factor γ =
√
p2 + 1, kinetic

energy W = mec
2(γ − 1) and total energy W = mec

2γ. The maximum kinetic
energy possible for an electron to be emitted with is Wmax = 18.6 keV. In
equation (2.27a), F (p, Zf) is the Fermi function [34]. As Wmax ≪ mec

2, the
non-relativistic limit of the Fermi function can be used for describing the energy
spectrum of the tritium beta decay (2.27a), which is

F (p, Zf) =
2παZfγ/p

1− exp (−2παZfγ/p)
, (2.28)

where Zf is the charge of the final state nucleus and α ≈ 1/137 is the fine
structure constant. The beta decay energy spectrum is plotted in figure 2.3.

Given the critical kinetic energy for runaway generation Wc, the runaway
generation rate from tritium beta decay is described by [35, 36],(

∂nre
∂t

)
T

≈ ln 2
nT
τT

∫ Wmax

Wc

fβ(W )dW. (2.29)
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Figure 2.3: The normalized energy spectrum of electrons emitted during beta
decay f̄β(W ) as a function of kinetic energyW , normalized so that max f̄β = 1.

Notably, ifWc = 0 could be achieved, the generation of runaway electrons would
be equal to the total generation rate of electrons from the decay, i.e. ln 2 ·nT/τT
which depends on the tritium density nT and half-life τT ≈ 4500 days.

2.4 Compton scattering

Photons can interact with electrons through Compton scattering, during which
the electrons can obtain a fraction of the photon energy and attain a significantly
higher speed. This Compton effect can generate runaway electrons in a plasma,
and can occur in a fusion reactor due to photons emitted by the activated walls
when operating a deuterium-tritium plasma. During the fusion of deuterium
and tritium,

D + T → α+ n, (2.30)

neutrons are emitted, and the neutron bombardment of the fusion reactor wall
causes the wall material to become radioactive. When the radioactive wall
material decays, γ-photons are emitted, which can scatter off both free and
bound electrons in the plasma, and potentially cause them to run away.

The differential cross-section for Compton scattering is given by the Klein-
Nishina formula [37]

dσ

dΩ
=
r2e
2

W ′2
γ

W 2
γ

[
Wγ

W ′
γ

+
W ′

γ

Wγ
− sin2(θ)

]
, (2.31)

where Wγ is the initial and W ′
γ the scattered photon energy, θ is the deflection

angle of the scattered photon, and re = e2/4πϵ0mec
2 is the classical electron

radius. The photon energies and the deflection angle are related by

cos θ = 1− mec
2

Wγ

W

W ′
γ

, (2.32)

under the assumption that the initial electron kinetic energy is negligible
compared to the initial photon energy. The electron energy W after the
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scattering event W can be obtained through energy conservation, i.e. Wγ =
W ′

γ +W .
Given a photon energy spectrum Γγ(Wγ) and critical kinetic energy Wc for

electrons to run away, the generation rate of runaway electrons from Compton
scattering is obtained as [35, 36](

∂nre
∂t

)
C

≈ ne,tot

∫
Γγ(Wγ)

∫ π

θc

dσ

dΩ
dΩdWγ . (2.33)

Here, θc = θ(Wc,Wγ) is the critical deflection angle for electrons to run away
and ne,tot is the total number density of electrons available for photons to
scatter on.

2.5 Avalanche generation

If there exists a seed of runaway electrons in the plasma, more runaways can
be generated through collisions with other electrons. When a runaway electron
collides with a slow electron, a part of its kinetic energy is transferred, and
this can result in them both having a velocity above the critical velocity after
the collision. At this point, both of the electrons are continually accelerated.
This mechanism is called avalanche generation, as it can lead to an exponential
increase in the number of runaway electrons [19, 25, 38].

The generation from avalanche multiplication is described by(
∂nre
∂t

)
ava

= Γavanre, (2.34)

where Γava is the avalanche growth rate, which depends on the electric field
strength E∥. For plasmas with E∥ ≫ Ec, the avalanche multiplication should
be strong, and more specifically the growth rate should be approximately
proportional to E∥. On the other hand, the avalanche multiplication should

vanish as E∥ → Eeff
c . If partial screening is accounted for, the avalanche growth

rate can be described by [38]

Γava =
e

mec ln Λc

ne,tot
nth

E∥ − Eeff
c√

4 + ν̄s(p⋆c)ν̄D(p⋆c)
. (2.35)

Here, nth is the density of free, thermal electrons, lnΛc is the relativistic
Coulomb logarithm, and the normalized collision frequencies ν̄s and ν̄D have
been derived to account for partial screening effects. Furthermore, p⋆c is an
effective critical momentum for runaway generation defined in Ref. [38] as

p⋆c
2 =

√
ν̄s(p⋆c)ν̄D(p⋆c)

E∥/Ec
. (2.36)

Notably, for avalanche generation to occur, the conditions for any of the
primary generation mechanisms need to be fulfilled. However, if there is a
large enough seed population (note that large enough does not necessarily
mean large), the avalanche generation typically dominates runaway generation,
despite the low collisionality of runaway electrons.



Chapter 3

Start-up and disruption
modelling

There are currently several large devices under construction (such as SPARC
and ITER) where significant runaway electron generation is expected and
could be devastating. It is necessary to develop viable strategies of operation,
using a combination of both numerical and physical experiments. Numerical
experiments enable a wider exploration of operational regimes, and can help
in predicting how results of existing physical experiments will extrapolate
to future, larger machines. When designing a numerical model for tokamak
plasmas, it must account for electromagnetic forces, inter-particle interactions
and inelastic atomic processes. In this chapter we summarize the plasma models
used in papers A, B, C and D.

The key elements modelled are the different particle species, with the
corresponding densities and temperatures, as well as the electric field and
characteristic current densities, which all need to be evolved in parallel and
self-consistently. How these plasma quantities are modelled is described in
more detail for tokamak disruptions in section 3.1 and for start-up in section
3.2, but let us here present a summary of important considerations valid for
both. For both start-up and disruptions, we consider heating caused by the
electric field, i.e. Ohmic heating, and collisional heat transfer between particle
species, as well as energy losses due to inelastic atomic processes in evolving the
temperatures. Regarding the electric field and the total plasma current, they
are modelled based on Faraday’s, Ampère’s and Ohm’s laws for both start-up
and disruptions.

Additionally, since the main focus of the aforementioned studies is the
generation and dynamics of runaway electrons, the electron modelling is here
given particular consideration. For numerical convenience, we divide the
electrons into three distinct populations based on their momentum – thermal,
or cold, electrons at relatively low momenta; superthermal, or hot, electrons
at moderate momenta; and runaway electrons at momenta significantly above
the critical momentum. Thermal electrons make up the bulk of the plasma,

23



24 CHAPTER 3. START-UP AND DISRUPTION MODELLING

and are defined to be described by a Maxwellian distribution. The thermal
electron density is evolved to ensure quasineutrality in the plasma. Notably,
the superthermal population is only distinguished from the thermal population
for kinetic modelling, as the purpose of defining the superthermal population
is to describe the dynamics near the critical momentum kinetically.

In the papers A, B, C and D, the runaway electrons have been modelled
as a fluid, characterized only by their density. From the density, the current
density can be approximated as jre = nreec [39], as the runaway electrons
travel close to the speed of light, dominantly parallel to the field lines. This
assumption is typically valid in reactor-scale tokamak disruptions, and sets
an upper limit for the runaway current magnitude. The runaway density is
determined by source terms representing the different generation mechanisms,
as well as a sink term representing particle transport. For both start-up and
disruptions, avalanche generation is expected to dominate the generation when
a runaway seed has been formed, and for start-up the main seed generation
mechanism that needs to be considered is Dreicer generation, due to the low
prefill pressures associated with start-up. During disruptions, we additionally
need to consider runaway electron seed generation from tritium beta decay
and Compton scattering, as well as from the hot-tail generation phenomenon
present during plasma cooling.

The models for tokamak start-up and disruptions presented here are similar,
but notably, the disruption model is of higher dimensionality. More specifically,
it considers both the radial dependence of the plasma and resolves dynamics
in momentum space. In the start-up model, the system of equations governing
the electric field and current evolution can be obtained from reducing the
disruption plasma model to 0D. Furthermore, the equations for evolving the
plasma temperatures and densities in the start-up model can be obtained by
expanding the disruption model to include neutral screening effects. For these
reasons, the disruption model is presented before the start-up model.

3.1 Modelling disruptions

The plasma model used for disruption simulations in this thesis reduces the
computational complexity by only retaining one spatial dimension, and up to
one dimension in momentum space [40]. More specifically, only the superthermal
electrons are modelled kinetically, with a distribution function which has been
analytically averaged over pitch angle. Spatially, we assume that the plasma
composition is homogeneous on each flux surface, and the dynamics of the
plasma is only modelled along the minor radius r.

In reality, the dynamics in a tokamak are not poloidally symmetric, especially
since the toroidal magnetic field varies as 1/R. The total magnetic field

can be modelled by the magnetic poloidal flux ψ(r) = 2π
∫ R(r)

0
(B · Ẑ)R dR

together with a toroidal magnetic field function G(r), which describes the
spatial dependence of the magnetic field, according to

B(r, θ) = G(r)∇φ+
1

2π
∇φ×∇ψ(r), (3.1)
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where φ is the toroidal angle and θ the poloidal angle. To approximately
account for the effect of the poloidal dependence of the magnetic field on the
dynamics, the plasma quantities are flux surface averaged. The flux surface
average of a quantity X is defined as

⟨X⟩ = 1

V ′

∫ 2π

0

∫ π

−π

XJ dθ dφ, (3.2)

with

V ′ =

∫ 2π

0

∫ π

−π

J dθ dφ, (3.3)

J =
1

|∇φ · (∇θ ×∇r)| , (3.4)

where the flux surface geometry is accounted for in the spatial Jacobian J ,
i.e. the elongation, triangularity and Shafranov shift.

Electric field and currents

The evolution of the electric field and plasma current is governed by the poloidal
magnetic flux. The electric field E is determined by the poloidal flux ψ(r)
through the loop voltage U in the plasma, as according to Faraday’s law

∂ψ

∂t
= U, (3.5)

and the loop voltage is related to the electric field through

U = 2π
⟨E ·B⟩
⟨B · ∇φ⟩ . (3.6)

At the wall (r = b), the loop voltage and poloidal flux are determined by the
wall resistivity and external inductance, forming the boundary conditions

Uwall = RwallIwall, (3.7a)

ψwall = −Lext(Ip + Iwall). (3.7b)

Here, the external inductance is assumed to be Lext = µ0R0 ln (R0/b), which,
together with the characteristic wall time τwall, determines the wall resistivity
Rwall = Lext/τwall.

For the plasma current, the poloidal flux and the total parallel plasma
current density jtot satisfy Ampère’s law

2πµ0⟨B · ∇φ⟩jtot
B

=
1

V ′
∂

∂r

[
V ′

〈
|∇r|2
R2

〉
∂ψ

∂r

]
, (3.8)

and the total plasma current Ip is obtained by integrating the total parallel
current density over the poloidal cross section

Ip =
1

2π

∫ a

0

V ′⟨B · ∇φ⟩jtot
B

dr. (3.9)
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The total current density can be divided into three components, corres-
ponding to the three electron populations, i.e. jtot = jΩ + jst + jre. The Ohmic
current is coupled to the electric field through Ohm’s law

jΩ = σ
⟨E ·B⟩√

⟨B2⟩
, (3.10)

where σ is the parallel electric conductivity [41]. As previously mentioned, the
runaway current density is determined by the runaway density nre according
to jre = nreec. If the superthermal population is modelled, its current density
jst is evaluated as a moment of the superthermal distribution function.

Reduced kinetic equation

The main purpose of distinguishing the superthermal population from the
thermal population, and modelling it kinetically, is to obtain a more accurate
description of the runaway electron seed generation. The momentum range in
which the superthermal population is defined should therefore encompass the
typical values of the critical momentum pc for runaway electron generation,
as the seed generation dynamics occur mostly around p ∼ pc. The dynamics
at momenta below the critical momentum is often dominated by pitch-angle
scattering during disruptions. Under the assumption of dominating pitch angle
scattering, it is possible to reduce the complexity of the kinetic model through
a perturbative treatment of the dynamics with the pitch angle scattering time
being the small parameter.

The full kinetic equation in cylindrical geometry for the superthermal
electrons during a disruption is [40]

∂f

∂t
=

1

p2
∂

∂p

[
p2
(
−⟨Ap⟩f + ⟨Dpp⟩∂f

∂p

)]
+

∂

∂ξ

[
−⟨Aξ⟩f + ⟨Dξξ⟩∂f

∂ξ

]
+

1

V ′
∂

∂r

[
V ′
(
−⟨Ar⟩f + ⟨Drr⟩∂f

∂r

)]
+ ⟨S⟩,

(3.11)

where the ⟨A⟩ terms represent advection, ⟨D⟩ terms represent diffusion and
⟨S⟩ represent all particle sources to be considered. Note that all of these terms
are flux surface averaged (see equation (3.2)), as denoted by ⟨·⟩. The two most
important effects are pitch angle scattering and electric field acceleration. Pitch
angle scattering leads to a diffusive process described by

⟨Dξξ
D ⟩ =

(
1− ξ2

) νD(p)
2

, (3.12)

where νD(p) is the pitch angle scattering, or deflection, collision frequency,
which depends on momentum. The electric field acceleration is modelled
through momentum and pitch-angle advection, described by

⟨Ap
E⟩ = ξ

e⟨E ·B⟩
B

, (3.13a)

⟨Aξ
E⟩ =

1− ξ2

p

e⟨E ·B⟩
B

. (3.13b)
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The part of the momentum advection that is not due to the electric field is
denoted by ⟨Âp⟩ = ⟨Ap⟩ − ⟨Ap

E⟩, and it includes slowing down effects due
to collisions ⟨Ap

C⟩ = −νsp, bremsstrahlung ⟨Ap
B⟩ = −νBs p and synchrotron

radiation ⟨Ap
S⟩ ∝ −pγ(1− ξ2). Slowing down effects due to collisions are also

included in the momentum space diffusion ⟨Dpp
C ⟩ = meTthγνs, where Tth is

the temperature of the thermal electron population, and due to synchrotron
radiation in the pitch angle space advection ⟨Aξ

S⟩ ∝ −ξ(1 − ξ2)/γ. Finally,
we account for radial transport effects through ⟨Drr⟩ and ⟨Ar⟩, which are
described in detail later on in this section.

Assuming strong pitch angle scattering, we can introduce the (small) order-
ing parameter δ such that the pitch angle scattering collision frequency νD ∼ δ0

and the parallel electric field ⟨E ·B⟩/B ∼ δ1, while all other terms are ∼ δ2.
Furthermore, expanding the distribution function with regard to the ordering
parameter, i.e. f = f0 + δf1 + δ2f2 +O(δ3), and inserting it into the kinetic
equation (3.11) together with (3.12), (3.13a) and (3.13b) yields

∂f0
∂t

=
1

p2
∂

∂p

[
p2
(
−ξ e⟨E ·B⟩

B
(f0 + δf1)− ⟨Âp⟩f0 + ⟨Dpp⟩∂f0

∂p

)]
+

∂

∂ξ

[
−1− ξ2

p

e⟨E ·B⟩
B

(f0 + δf1)− ⟨Aξ
S⟩f0

+
(
1− ξ2

) νD
2

(
∂f0
∂ξ

+ δ
∂f1
∂ξ

+ δ2
∂f2
∂ξ

)]
+

1

V ′
∂

∂r

[
V ′
(
−⟨Ar⟩f0 + ⟨Drr⟩∂f0

∂r

)]
+ ⟨S⟩+O(δ3).

(3.14)

We can now separate equation (3.14) into three equations based on their order
in δ:

δ0 : 0 =
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f0
∂ξ

]
, (3.15a)

δ1 : 0 = −e⟨E ·B⟩
B

[
ξ

p2
∂
(
p2f0

)
∂p

+
1

p

∂
((
1− ξ2

)
f0
)

∂ξ

]

+
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f1
∂ξ

]
,

(3.15b)

δ2 :
∂f0
∂t

= −e⟨E ·B⟩
B

[
ξ

p2
∂
(
p2f1

)
∂p

+
1

p

∂
((
1− ξ2

)
f1
)

∂ξ

]

+
νD
2

∂

∂ξ

[(
1− ξ2

) ∂f2
∂ξ

]
+

∂

∂ξ

[
−⟨Aξ

S⟩f0
]

+
1

p2
∂

∂p

[
p2
(
−⟨Âp⟩f0 + ⟨Dpp⟩∂f0

∂p

)]
+

1

V ′
∂

∂r

[
V ′
(
−⟨Ar⟩f0 + ⟨Drr⟩∂f0

∂r

)]
+ ⟨S⟩.

(3.15c)
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According to equation (3.15a), ∂f0/∂ξ = 0 or equivalently f0 = f0(t, r, p),
meaning that, to the lowest order, the distribution function is isotropic in pitch
angle. Using this in equation (3.15b), we get

∂

∂ξ

[(
1− ξ2

) ∂f1
∂ξ

]
= 2

e⟨E ·B⟩
νDB

[
ξ
∂f0
∂p

+
2ξf0
p

+
1− ξ2

p

∂f0
∂ξ

− 2ξf0
p

]
= 2

e⟨E ·B⟩
νDB

∂f0
∂p

ξ,

(3.16)

which we can integrate over ξ, from −1 to ξ, to obtain(
1− ξ2

) ∂f1
∂ξ

= −e⟨E ·B⟩
νDB

∂f0
∂p

(
1− ξ2

)
(3.17a)

=⇒ ∂f1
∂ξ

= −e⟨E ·B⟩
νDB

∂f0
∂p

. (3.17b)

Once again, we integrate from −1 to ξ to obtain

f1 = −e⟨E ·B⟩
νDB

∂f0
∂p

(ξ + 1) , (3.18)

and this expression we can insert into equation (3.15c). Before doing this,
however, we integrate (3.15c) over pitch angle

1

2

∫ 1

−1

∂f0
∂t

dξ = −1

2

∫ 1

−1

e⟨E ·B⟩
B

ξ

p2
∂
(
p2f1

)
∂p

dξ (3.19a)

+
1

2

∫ 1

−1

∂

∂ξ

[(
1− ξ2

)(νD
2

∂f2
∂ξ

− e⟨E ·B⟩
B

f1
p

)
− ⟨Aξ

S⟩f0
]
dξ

(3.19b)

+
1

2

∫ 1

−1

{
1

p2
∂

∂p

[
p2
(
−⟨Âp⟩f0 + ⟨Dpp⟩∂f0

∂p

)]
+

1

V ′
∂

∂r

[
V ′
(
−⟨Ar⟩f0 + ⟨Drr⟩∂f0

∂r

)]
+ ⟨S⟩

}
dξ.

(3.19c)

Since f0 does not depend on pitch angle, the left hand side of equation (3.19)
is equal to its integrand. For (3.19c), we only need to average the advection
and diffusion coefficients, as well as the source term, with regard to pitch angle,
and these averages we denote by ⟨·⟩ξ. The term (3.19b) is zero, since the factor(
1− ξ2

)
is zero at the integral boundaries, and also ⟨Aξ

S⟩ ∝
(
1− ξ2

)
. Finally,

if we insert the expression for f1, i.e. (3.18), into the first term on the right
hand side, we obtain

(3.19a) =
1

p2
∂

∂p

(
p2
e2⟨E ·B⟩2
νDB2

∂f0
∂p

)∫ 1

−1

ξ (ξ + 1)

2
dξ

=
1

p2
∂

∂p

(
p2
e2⟨E ·B⟩2
3νDB2

∂f0
∂p

)
.

(3.20)
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The final reduced kinetic equation is thus

∂fst
∂t

=
1

p2
∂

∂p

[
p2
(
−⟨Âp⟩ξfst +

(
⟨Dpp⟩ξ +

e2⟨E ·B⟩2
3νDB2

)
∂fst
∂p

)]
+

1

V ′
∂

∂r

[
V ′
(
−⟨Ar⟩ξfst + ⟨Drr⟩ξ

∂fst
∂r

)]
+ ⟨S⟩ξ.

(3.21)

Notably, in this equation the electric field takes the form of a diffusion operator,
rather than the conventional advection operator in equation (3.11).

Since the leading order term of the distribution function is isotropic, it can
not carry a current. Instead, the current has to be evaluated using the next
order term (f1), given in equation (3.18), according to

j1 = 2π
e2⟨E ·B⟩

B

∫ ∞

0

∫ 1

−1

ξ(1 + ξ)
v(p)p2

νD

∂fst
∂p

dξdp

=
2π

3

e2⟨E ·B⟩
B

∫ ∞

0

v(p)p2

νD

∂fst
∂p

dp.

(3.22)

If f1 is large at momenta where the assumption of ⟨E ·B⟩/(Bνd(p)) ∼ δ1

is no longer valid, the current density obtained from this expression can be
unreasonably high, since f1 does not conserve particle density. When the current
density is overestimated by equation (3.22), we could get a better approximation
of the current density value from fst (still evaluated using (3.21)) by assuming
that all superthermal electrons travel parallel to the magnetic field lines, i.e.

j2 = 4πe sgn (⟨E ·B⟩)
∫ ∞

0

v(p)p2fstdp. (3.23)

Thus, to get a good and reasonably bounded estimation of the superthermal
current density, we use

jst =
j1j2√
j21 + j22

. (3.24)

Since the driving forces behind the runaway phenomenon, namely the
interplay between electric field acceleration and collisional friction, are included
in the kinetic equation (3.21), the runaway seed generation is implicitly modelled
as part of the momentum space particle flux. The flux of particles from the
superthermal to the runaway electron population is found to be

ϕpst = 4πV ′p2re

[
−⟨Âp⟩ξfst +

(
⟨Dpp⟩ξ +

e2⟨E ·B⟩2
3νDB2

)
∂fst
∂p

]
p=pre

, (3.25)

i.e. it is the momentum space particle flux through the upper boundary pre of
the momentum grid on which the superthermal population is defined. This
momentum space particle flux includes both hot-tail and Dreicer generation,
as well as seed generation from tritium beta decay and Compton scattering
during activated operation.

To include the activated seed generation mechanisms, it is necessary to
model the generation of superthermal electrons from these activated processes
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through source terms in the kinetic equation (3.21). These source terms are
derived in paper C, and a more detailed description of the physics behind
these generation mechanisms can be found in sections 2.3 and 2.4. The source
term due to tritium beta decay depends on the tritium particle density nT and
tritium half life τT according to

⟨ST⟩ = C
ln 2

4π

nT
τT

1

p2
pγ (γmax − γ)

2

1− exp(−4πα/β)
Θ(pmax − p), (3.26)

where α is the fine structure constant, β = p/γ is the normalized speed
and C is a proportionality constant used to ensure that the total generation
rate is ln 2 · nT/τT. The maximum momentum pmax and Lorentz factor γmax

correspond to the maximum energy, Wmax of an emitted beta electron. For the
Compton scattering, we instead consider the photon energy spectrum Γγ , which
depends on machine design and plasma composition, and the total number of
electrons available for photons to scatter on ne,tot. The source term can be
shown to take the form

⟨SC⟩ =
ne,tot
2

1

p2

∫ ∞

Wγ0

Γγ(Wγ)
dσ

dΩ

β(
Wγ

mec2
+ 1− γ

)2 dWγ , (3.27)

where dσ/dΩ is the Klein-Nishina differential cross section [37] and Wγ is the
photon energy.

Runaway electrons

When seed generation is modelled kinetically by evolving the superthermal
electron population, the runaway electron density

∂nre
∂t

= Γavanre + ϕpst + γC +
1

V ′
∂

∂r

[
V ′⟨Drr⟩∂nre

∂r

]
, (3.28)

where ϕpst describes the runaway seed generation as in (3.25), and

γC =

∫
p>pre

⟨SC⟩d3p. (3.29)

There is no corresponding term for tritium beta decay, since pre should be
chosen such that pmax < pre, meaning that all electrons generated by tritium
beta decay are generated within the superthermal momentum range.

When the runaway seed generation is not modelled kinetically, all seed
generation mechanisms need to be modelled as generation rates, and the
runaway electron seed generation is instead replaced by

ϕpst + γC → γD + γht + γT + γC. (3.30)

The Dreicer generation is described by γD, which for electric fields E ≫ Ec can
be estimated [23] by equation (2.3) in section 2.1. However, this expression
overestimates the generation rate for lower electric field strengths. To achieve
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Dreicer generation rates with comparable accuracy to that of kinetic modelling,
even for lower electric field strengths, we instead use a neural network trained
on kinetic simulations [26]. For an analytical expression to estimate the hot-tail
generation rate γht, we use (2.25), derived in section 2.2, i.e.

γht = −4πp2c
∂pc
∂t

nfree,0
π3/2p3th,0

exp

[
−
(
p3 + 3τ(t)

)2/3
p2th,0

]
, (3.31)

where pc is the critical momentum for runaway electron generation, pth,0 is the
initial thermal momentum, nfree is the initial free electron density and τ(t) is
the time integrated collision frequency. Finally, the tritium beta decay and
Compton scattering generation rates are determined according to the same
principles as the kinetic sources in equations (3.26) and (3.27), only they are
integrated in momentum space from the critical momentum [35, 36], i.e.

γT/C =

∫
p>pc

⟨ST/C⟩d3p. (3.32)

Since it is mainly electrons with p > pre that contribute to the avalanche
multiplication, avalanche generation cannot be accurately described kinetically
using the distribution of the superthermal electrons. Instead, it is modelled as
a growth rate term, i.e. the Γavanre in equations (3.28). The avalanche growth
rate is determined from the electron density and electric field, according to

Γava =
e

mec ln Λc

ne,tot
nth

E∥ − Eeff
c√

4 + ν̄s(p⋆c)ν̄D(p⋆c)
, (3.33)

as described in section 2.5 [38].

Temperature

In this disruption model, the plasma temperature is defined through the energy
density Wth of the thermal (bulk) electron population as Tth = 2Wth/3nth. Its
evolution is governed by the energy balance equation

∂Wth

∂t
=
jΩ
B

⟨E ·B⟩ − nth
∑
i

Zi−1∑
j=0

n
(j)
i L

(j)
i + ⟨Qc⟩

+
1

V ′
∂

∂r

[
V ′⟨Drr⟩3nth

2

∂Tth
∂r

]
.

(3.34)

There are two heating terms in this temperature evolution model. The first
term of equation (3.34) represents the Ohmic heating, i.e. the heating of the
plasma due to the electron-ion collision induced resistance to the thermal part
of the plasma current. Notably, the Ohmic heating is stronger at low plasma
temperatures, due to the resistivity of the plasma ∝ T−3/2. Additionally,
the thermal electron population can be heated through collisions with ions,
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superthermal and runaway electrons. Heating from collisions with superthermal
electrons is described by

⟨Qc,st⟩ = 16π2nthr
2
emec

4

∫
ln Λee

p2

v
fstdp, (3.35)

with re being the classical electron radius and lnΛee the electron-electron
Coulomb logarithm [40]. Assuming that all runaway electrons travel at the
speed of light, the heating from collisions with runaway electrons can be
estimated by

⟨Qc,re⟩ = ecEcnre, (3.36)

where Ec is the Connor-Hastie field. For collisions with ions, the heating term
is a sum over all ion species, i.e.

⟨Qc,ions⟩ =
∑
i

⟨Qei⟩, (3.37)

where the heat transfer ⟨Qei⟩ to particle species k from collisions with particle
species l is

Qkl =

 Zk∑
j=0

n
(j)
k Z2

0j

 Zl∑
j=0

n
(j)
l Z2

0j

 e4 ln Λkl

(2π)3/2ϵ20mkml

Tl − Tk(
Tk

mk
+ Tl

ml

)3/2 , (3.38)

with the Coulomb logarithm lnΛkl representing collisions between particles of
species k and l [40]. Here, Zi denotes atomic number and Z0j denotes charge

number for charge state j, n
(j)
i denotes the ion density of charge state j, mi

denotes particle mass and Ti species temperature.
The thermal population is cooled through inelastic atomic processes –

namely radiation, ionization and recombination – and heat transport. Heat
transport is modelled through the last term on the left hand side of equation
(3.34), and is described in detail in the section on transport. The inelastic
processes are modelled through the second term of (3.34), where for ions of
species i and charge state j

L
(j)
i = Lrad +∆W

(j)
i

(
I
(j)
i −R

(j)
i

)
. (3.39)

Here, Lrad is the heat loss due to line and recombination radiation, as well as

radiation due to bremsstrahlung. The ionization threshold ∆W
(j)
i , obtained

from the NIST database [42], together with the ionization rate I
(j)
i and re-

combination rate R
(j)
i , yields the heat loss due to changes in potential energy.

The ionization and recombination rates are obtained from the AMJUEL data-
base [43] for hydrogen isotopes, which accounts for opacity effects, and from
the OpenADAS database for other ion species [44].

Similarly, the ion temperatures are evolved according to equipartition,
Wi = 3niTi/2, where for ion species i

∂Wi

∂t
= ⟨Qie⟩+

∑
k

⟨Qik⟩. (3.40)
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The ion densities are evolved through modelling ionization and recombination,

using the I
(j)
i and R

(j)
i rates above, according to

∂n
(j)
i

∂t
=
(
I
(j−1)
i nth + ⟨I(j−1)

i fst⟩
)
n
(j−1)
i −

(
I
(j)
i nth + ⟨I(j)

i fst⟩
)
n
(j)
i

+R
(j+1)
i nthn

j+1
i −R

(j)
i nthn

(j)
i .

(3.41)

Notably, we also consider kinetic ionization due to collisions between ions and
superthermal electrons, which is described by

⟨I(j)
i fst⟩ = 4π

∫
p2σ

(j)
ion,i vfst dp, (3.42)

where σ
(j)
ion,iis the ionization cross section [45].

Transport

During the thermal quench, when the magnetic surfaces are broken up and field
lines are stochastic, there is significant radial transport of runaway electrons,
superthermal electrons and thermal energy. For self-consistent modelling of
the transport dynamics, higher dimensionality than used in this plasma model
is required, both spatially and with regard to velocity. Instead, we rely on
analytical formulas to estimate the particle and heat transport losses. We have
used the Rechester–Rosenbluth diffusion model, with diffusion coefficient [46]

Drr = πqR0

∣∣v∥∣∣ (δB
B

)2

, (3.43)

and no advection, i.e. Ar = 0. Here, q is the safety factor. The magnetic
stochastization is quantified through the relative amplitude of the magnetic
perturbation, δB/B, which is assumed to be spatially and temporally constant
during the thermal quench for simplicity. As we evolve the velocity distribution
of the superthermal electrons, in equation (3.21), the diffusion coefficient is
exactly as described by equation (3.43). For the thermal energy transport, in
equation (3.34), the parallel velocity can be shown to be approximately the
thermal speed, derived using the fact that the thermal bulk is Maxwellian [40].
The runaway electrons are assumed to travel parallel to the magnetic field
lines at the speed of light, meaning that for the diffusion coefficient Drr of
equations (3.28), v∥ = c. As this transport neither accounts for the pitch angle
dependence of the runaway electron transport, nor for finite Larmor radius and
orbit width effects [47], this gives an upper boundary of the runaway electron
transport [48].

3.2 Modelling start-up

The physics can mostly be modelled similarly for tokamak disruptions and start-
up, except for three key differences that need to be taken into consideration.
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Firstly, a strong, externally induced electric field is applied during the start-up,
to ionize the fuel gas and initiate the plasma. Secondly, during the ionization
phase, neutral particles are screened out of the core of the plasma, which affects
the density and energy balance. Finally, there will be anomalously high particle
transport before the flux surfaces have been properly formed, which needs to
be accounted for. Here, we present the start-up model used in paper A, which
derives from the plasma model used for disruptions.

The start-up model is 0D, meaning that both the spatial and momentum
dependence of the plasma evolution are neglected. The main reason for not
retaining the radial dependence of the plasma evolution, as is done in the
disruption model, is the model that is used to accounting for neutral screening.
Neutral particles can exist both in the outer part of the plasma, as well as in the
vessel volume, while the charged particles are confined to the plasma. Spatially,
the plasma models used in this thesis only consider the plasma, and not the
whole vessel volume. Accounting for the effect of neutral screening would
complicate the density and energy balance equations if the spatial dependence
would be considered, due to the complicated geometry of the non plasma part
of the vacuum vessel.

Electric field and currents

When modelling the electric field during start-up, the electric field evolution
should account for the external electric field applied to initiate the plasma. If
the spatial dependence of the plasma evolution is neglected, meaning that we
assume a 0D plasma model, circuit theory can be used to determine the electric
field evolution, under the influence of the externally applied loop voltage Uext.

The circuit equations can be derived from the electric field and current
model used for disruptions ((3.5) – (3.9)), i.e.

U = 2π
⟨E ·B⟩
⟨B · ∇φ⟩ , (3.44a)

∂ψ

∂t
= U, (3.44b)

2πµ0⟨B · ∇φ⟩jtot
B

=
1

V ′
∂

∂r

[
V ′

〈
|∇r|2
R2

〉
∂ψ

∂r

]
, (3.44c)

Ip =
1

2π

∫ a

0

V ′⟨B · ∇φ⟩jtot
B

dr, (3.44d)

ψwall = ψsym − Lext(Ip + Iwall), (3.44e)

Uwall = RwallIwall. (3.44f)

Notably, equation (3.44e) contains a term ψsym compared to (3.7b), which
describes the poloidal flux at the symmetry axis R = 0. In the disruption

model, we defined ψ(r) = 2π
∫ R(r)

0
(B · Ẑ)R dR such that ψsym = ψ(R = 0) = 0.

However, if we want to consider an externally applied loop voltage we can

instead introduce a uniform offset, such that ψ(r) = ψext+2π
∫ R(r)

0
(B ·Ẑ)R dR,
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where
∂ψext

∂t
= Uext (3.45)

in accordance with Faraday’s law. Here, we assume the central solenoid
responsible for inducing the applied electric field is a line source aligned with
the symmetry axis, as opposed to having a finite width. Note that including
ψext in the poloidal flux does not change the magnetic field. Importantly, the
poloidal magnetic flux at the symmetry axis ψsym = ψext, and is in general
time dependent.

Starting from the total parallel current density jtot, we can integrate equa-
tion (3.44c) over the plasma cross section in accordance with equation (3.44d),
i.e.

2πµ0

∫ r

0

V ′⟨B · ∇φ⟩jtot
B

dr′ =

∫ r

0

V ′ 1

V ′
∂

∂r′

[
V ′

〈
|∇r′|2
R2

〉
∂ψ

∂r′

]
dr′ (3.46a)

=⇒ (2π)2µ0I(r) = V ′

〈
|∇r|2
R2

〉
∂ψ

∂r
(3.46b)

=⇒ ∂ψ

∂r
=

1

V ′
〈
|∇r|2/R2

〉 (2π)2µ0I(r), (3.46c)

where I(r) is the plasma current enclosed within the flux surface with minor
radius r. Note that in equation (3.46a), the integrand will be zero at r = 0
since V ′(r = 0) = 0.

The solution to the differential equation (3.46c)

ψ(r) ≡ ψ = ψ(r0) + (2π)2µ0

∫ r

r0

I(r′)dr′

V ′
〈
|∇r′|2/R2

〉 , (3.47)

where r0 is an arbitrary minor radius. If we now only consider the pol-
oidal flux outside of the plasma (r > a), choosing r0 = a and noting that
I(r > a) = I(a) = Ip, we obtain

ψ = ψ(a) + (2π)2µ0Ip

∫ r

a

dr′

V ′
〈
|∇r′|2/R2

〉 = ψ(a) + Le(r)Ip. (3.48)

Here we have introduced the inductance variable Le, representing the inductance
between the plasma edge and the open flux surface with minor radius r. At
the tokamak wall (r = b),

ψwall = ψ(a) + LewIp, (3.49)

with the inductance parameter Lew, representing the inductance between the
plasma edge and the wall.
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Using Faraday’s law (3.44b) on equations (3.48) and (3.49), as well as
(3.44e), we obtain three expressions for the loop voltages

U = U(a) + Le
dIp
dt

, (3.50a)

Uwall = U(a) + Lew
dIp
dt

, (3.50b)

Uwall = Uext − Lext

(
dIp
dt

+
dIwall

dt

)
, (3.50c)

which can be combined into a single circuit equation relating all voltages and
currents, namely

Uext = U + (Lext + Lew − Le)
dIp
dt

+ Lext
dIwall

dt
. (3.51)

Furthermore, in 0D, equation (3.44a) is simplified to

U = 2π
⟨E ·B⟩
⟨B · ∇φ⟩ → 2π

E∥ ·B
B · 1/R0

= 2πR0E∥. (3.52)

If we instead combine (3.50c) with equation (3.44f), we get

Uext = RwallIwall + Lext

(
dIp
dt

+
dIwall

dt

)
. (3.53)

Equations (3.51) and (3.53) give the general form of the circuit equations
used for the start-up electric field model. However, this approach assumes that
the tokamak wall is shaped in the same way as the plasma, which is typically
not the case. To account for arbitrary vessel shapes, the inductances can be
replaced with more general expressions, as is done in for example the DYON
start-up simulation code [11]. More specifically, the circuit equations used
for evolving the electric field, as well as the plasma and wall currents in the
tokamak start-up model are

Uext = 2πR0E∥ + Lp
dIp
dt

+M
dIwall

dt
, (3.54a)

Uext = RwallIwall +M
dIp
dt

+ Lwall
dIwall

dt
, (3.54b)

where the plasma inductance Lp, wall inductance Lwall, plasma-wall mutual
inductance M and wall resistivity Rwall are free parameters.

Transport

Closed flux surfaces are formed during the burn-through phase of the plasma
discharge, which greatly improves particle confinement. At the beginning of the
burn-through phase, the magnetic field lines are open, and the main particle
losses occur along these field lines. When closed flux surfaces have formed,
however, transport perpendicular to the field lines dominates. Transport is
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accounted for in the density and temperature evolution of the ions and electrons.
Details of the modified expressions for the temperature and density evolution
can be found in the following sections. The transport rate of a quantity X can
be estimated by X/τ , where τ is the confinement time.

To account for both parallel and perpendicular losses of ions, we define the
ion confinement time τi such that

1

τi
=

1

τ
∥
i

+
1

τ⊥i
. (3.55)

When parallel losses dominate, the parallel confinement time τ
∥
i is short and

τi ≈ τ
∥
i , while analogously, when perpendicular losses dominate τi ≈ τ⊥i . The

parallel transport during the burn-through phase can be described by trans-
sonic ambipolar flow along the field lines [11]. This enables us to evaluate the
confinement time from the effective distance the ions travel before leaving the
plasma, i.e. the connection length Leff , and the effective speed at which the
ions travel, namely the sound speed of the main ion species Cs, as

τ
∥
i =

Leff

Cs
. (3.56)

The sound speed of the main ion species is evaluated as

Cs =

√
Tth + Tm
mm

, (3.57)

where Tm and mm are the temperature and mass of the main ion species,
respectively. The effective connection length is determined by the plasma minor
radius and the magnetic field configuration, which in turn is affected by the
plasma current evolution. As the plasma current increases, the effect of stray
magnetic fields caused by currents in plasma-facing conducting structures (so
called eddy currents) on the magnetic configuration decreases and closed flux
surfaces start to form. More specifically, the effective connection length can be
estimated by [11, 49, 50]

Leff =
3a(t)

4

Bφ

Bz(t)
exp

(
Ip(t)

Iref

)
, (3.58)

where Bφ is the toroidal magnetic field strength. The parameter Iref repres-
ents the plasma current value at which point the flux surfaces have formed,
which happens when the plasma current exceeds the eddy currents in the wall.
Thus, Iref can be estimated from the maximum eddy currents feasible in the
surrounding structure of the specific machine [11]. Notably, the connection
length evolves in time through the plasma current Ip, the stray magnetic field
Bz(t) – consisting of the vertical magnetic field Bv and eddy current induced
magnetic field Beddy(t) – and through the minor radius a(t) of the outermost
closed flux surface.

The perpendicular particle transport is described by Bohm diffusion [51],
which is collisional diffusion in the high-collisionality regime. The perpendicular
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confinement time is evaluated from the Bohm velocity vBohm, which stems from
the Bohm diffusion coefficient DBohm as vBohm = 2DBohm/a, and the plasma
minor radius as

τ⊥i =
a(t)

vBohm(t)
=

a(t)2

2DBohm(t)
, (3.59)

where

DBohm =
1

16

Tth(t)

eBφ
. (3.60)

The confinement time for thermal electrons τe is assumed to be equal to the
ion confinement time, due to ambipolarity, but it is different for the runaway
electrons, as they are travelling at much higher speeds. Similarly to ions
and thermal electrons, the runaway electron losses are dominated by parallel
transport when the magnetic field lines are open, with the same effective
connection length Leff . However, the runaway electrons can not be assumed to
travel at a constant velocity, as they are freely accelerated by the electric field
E∥ according to

dp

dt
= eE∥. (3.61)

Assuming that the electric field varies slowly on the timescales of runaway
electron acceleration, we can integrate equation (3.61) in time and solve for
the velocity, we obtain the time evolution of the velocity of a runaway electron

v =
eE∥t/me√
1 +

(
eE∥t

mec

)2 . (3.62)

Integrating this velocity over the runaway electron confinement time τ
∥
re yields

the effective connection length

Leff =
mec

2

eE∥


√√√√1 +

(
eE∥τ

∥
re

mec

)2

− 1

 , (3.63)

from which we can solve for the confinement time to obtain

τ∥re =
mec

eE∥

√(
eE∥Leff

mec2
+ 1

)2

− 1. (3.64)

When the flux surfaces have formed, the transport of runaway electrons is
instead dominated by drift effects caused by the increasing kinetic energy of
the runaway – as the energy is increased, the particle orbits are shifted out of
the plasma. Based on the conservation of the toroidal momentum (equation
(4.16) of Ref. [16]) it can be argued that the maximum energy possible for a
runaway electron to have before its orbit intersects the plasma wall is

γmax ≈ 5.6× 10−5 R0

a(t)
Ip(t) [A]. (3.65)
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If we integrate equation (3.61) over the drift confinement time τdre, we get the
corresponding maximum momentum

pmax =

∫ τd
re

0

eE∥dt = eE∥τ
d
re. (3.66)

For runaway energies, we can use the approximation pmax ≈ mecγmax, which
yields the drift confinement time

τdre ≈ 10−7R0

a

Ip(t) [A]

E∥ [V/m]
. (3.67)

In order for the parallel transport to dominate before the flux surfaces have
formed, and drift transport after, we interpolate between the two using the
same plasma current criteria as for the connection length, i.e.

1

τre
=

exp (Ip(t)/Iref)

τ
∥
re

+
1− exp (Ip(t)/Iref)

τdre
. (3.68)

Two volume method

After the breakdown phase, but prior to burn-through, the mean free path
for ionization of neutrals decreases. This means that the volume surrounding
the centre of the plasma solely consists of ions, while neutrals are only present
outside of the plasma core. This neutral screening effect needs to be taken
into consideration when modelling the density flux between neutrals and ions
through ionization, recombination and charge exchange, since the volume
occupied by neutrals is different to the volume occupied by ions. In the start-
up model used in paper A, we utilize the two volume method [52], which
estimates the part of the plasma volume Vn,i where neutrals of ion species i
remain, based on the mean free path of the neutral being ionized by an electron.
To get an accurate evolution of the density and kinetic energy, ionization,
recombination and charge exchange rates are weighted with the proportionality
between the volume where the reaction can occur and the volume where the
resulting ion or neutral can exist. More specifically, the weighting factors are
needed to ensure that the densities (and energy densities) integrate to the
correct total particle numbers (and energy), as different particle species occupy
different subsets of the tokamak vessel volume.

The relevant volumes of this method are illustrated in figure 3.1. The
vacuum vessel of the plasma has the volume Vvv. The plasma volume Vp is a
subset of the vacuum vessel volume, and notably, it contains both charged and
neutral particles, and is evaluated as

Vp(t) =

∫ a(t)

0

dr

∫ 2π

0

dφ

∫ π

−π

J dθ, (3.69)

which accounts for plasma shaping and the possible time dependence of the
minor radius a.
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Vvv

Vp Vn,i

γn,iVvv

Figure 3.1: Illustration of volume partitioning for the two volume method.
First is the full vacuum vessel volume Vvv (purple, red and light yellow), second
is the plasma volume Vp (red and light yellow), third is the part of the volume
Vn,i where neutrals of ion species i remain (red), and last is the total volume
γn,iVvv where neutrals of ion species i remain (purple, red).

Due to neutral screening, neutral particles are not present in the full plasma
volume, however, and the volume Vn,i is the sub-volume where neutrals of ion
species i remain, evaluated from the ionization mean free path. The ionization
mean free path for ions of species i is evaluated from the thermal ion speed
vth,i =

√
2Ti/mi, thermal electron density nth and the ionization rate of the

neutral I
(0)
i as

λi =
vth,i

nthI
(0)
i

. (3.70)

Given the ionization mean free path, the volume where neutrals remain can be
estimated by

Vn,i(t) = 2π2R0κ
[
a(t)2 − (a(t)− λi)

2
]

+ 2κδ (8− 3π)

[
a(t)3 − (a(t)− λi)

3

3

]
,

(3.71)

where the first term is the full analytical expression for an elliptical plasma
with elongation κ, and the second term is an approximation of the correction
when accounting for the plasma triangularity δ.

Neutral particles are also present in the sub-volume of the vacuum vessel
which does not contain plasma, and this sub-volume is denoted by γn,iVvv,
where

γn,i = 1− Vp − Vn,i
Vvv

. (3.72)
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Inside the plasma, ions of species i and charge state j occupy the volume

V̂
(j)
i =

{
Vn,i for j = 0,

Vp for j ≥ 1,
(3.73)

while inside the whole vacuum vessel, they occupy the volume

V
(j)
i =

{
γn,iVvv for j = 0,

Vp for j ≥ 1.
(3.74)

Notably, ionization of ions of species i and charge state j only occurs in the

volume V̂
(j)
i , while recombination occurs in the full plasma volume.

The ion density evolution is governed by

∂n
(j)
i

∂t
=

1

V
(j)
i

[
V̂

(j−1)
i I

(j−1)
i nthn

(j−1)
i − V̂

(j)
i I

(j)
i nthn

(j)
i

+ V̂
(j+1)
i R

(j+1)
i nthn

(j+1)
i − V̂

(j)
i R

(j)
i nthn

(j)
i

+V̂ (0)
m n(0)m A

(j)
i,cx

]
+ S

(j)
i .

(3.75)

Compared to the disruption model, equation (3.41), we account for neutral
screening through the two-volume method by the inclusion of the factors
V̂ /V on the ionization, recombination and charge exchange terms. The term

V̂
(0)
m n

(0)
m A

(j)
i,cx/V

(j)
i represents the effect of charge exchange between neutrals of

the main particle species and ions of other particle species, with the interaction
factor

A
(j)
i,cx =


−∑k

∑
l C

(l)
ik n

(l)
k for i = m, j = 0, k ̸= m,

+
∑

k

∑
l C

(l)
ik n

(l)
k for i = m, j > 0, k ̸= m,

C
(j+1)
im n

(j+1)
i − C

(j)
imn

(j)
i for i ̸= m,

(3.76)

where C
(l)
ik denotes the charge exchange rate, which is also obtained from the

ADAS database [44].
Additionally, we account for transport of ions and influx of neutral particles

from fuelling or from wall sputtering, using the sink-source term S
(j)
i . For ions

(j ≥ 1),

S
(j)
i = −n

(j)
i

τi
, (3.77)

while for neutrals (j = 0)

S
(0)
i =

1

V
(0)
i

[
VpSi,s + V̂

(0)
i S

(0)
i,f (t)

]
, (3.78a)

where the first term represents wall sputtering and the second term plasma
fuelling. Wall sputtering is a result of the ion bombardment of the wall due to
incomplete ion confinement, and can have both chemical and physical causes.
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Given the sputtering yield Yik of an ion of species i due to the incident species
k, the total sputtering yield can be modelled as

Si,s =
∑
k

∑
l≥1

Yik
n
(l)
k

τk
. (3.79)

When using the two-volume method, and accounting for particle confine-
ment, for the evolution of the temperature, through the kinetic energy, equations
(3.34) and (3.40) are modified according to

∂Wth

∂t
=
jΩ
B
E∥ − nth

∑
i

Zi−1∑
j=0

V̂
(j)
i

V
(j)
i

n
(j)
i L

(j)
i +

∑
i

Qei −
Wth

τe
, (3.80)

∂Wi

∂t
= Qie +

∑
k

Qik − 3

2

V̂
(0)
m

Vp
n(0)m (Ti − Tm)C

(1)
i,cxn

(1)
i − Wi

τi
. (3.81)

Notably, the two-volume method is used for the inelastic atomic processes

represented by L
(j)
i and the charge exchange term, which is not included in

the disruption model. In the charge exchange term, Tm is the temperature of
the main ion species. Notably, the temperature of an ion species is the same
for all charge states.

Runaway electrons

The low critical electric field, caused by the low prefill densities, is the main
reason why runaway electrons risk being generated during tokamak start-up.
For this reason, the main seed generation mechanism present would be Dreicer
generation, and avalanche generation will also be significant. Hot-tail generation
is not a concern during start-up, as it results from a rapid loss of thermal
energy. Generation from Compton scattering and tritium beta decay could
be present, but would be negligible compared to the Dreicer generation. For
these reasons, the runaway electron density evolution is, in the start-up model,
governed by

∂nre
∂t

= Γavanre + γD − nre
τre

, (3.82)

where we account for Dreicer and avalanche generation, as well as radial
transport of runaway electrons due to incomplete particle confinement, as
described above. The inclusion of runaway electrons in the start-up plasma
evolution is an important aspect that sets the start-up model in paper A apart
from other models for tokamak start-up, e.g. DYON [11, 50].
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Disruption mitigation
optimization

During a disruption, the tokamak structure can generally be affected by elec-
tromechanical (j × B) forces and high heat loads. These effects can cause
torques and melting of plasma-facing components, respectively, and need to
either be avoided or mitigated for successful tokamak reactors.

Electromechanical forces can be caused by eddy currents if the CQ is fast
and halo currents if it is slow. Halo currents are currents circulating on open
magnetic field lines that pass through both the plasma and the surrounding
tokamak inner walls [12, 13]. If the halo currents are asymmetric, or spatially
localized, they can produce large forces on local structures [13]. Asymmetries
mainly arise during plasma vertical displacement events, which is why halo
currents are mainly a concern for slow disruptions. If the current decays on
a timescale faster than the plasma can be displaced, the risk of asymmetric
halo currents is reduced [53]. Furthermore, the slower the current decay is,
the longer time the halo currents have to load the surrounding structures with
j ×B forces.

On the other hand, if the disruption is too fast, eddy currents can be
induced, which are currents circulating in plasma-facing conducting structures.
When these eddy currents interact with the magnetic field, the resulting forces
can cause localized torques on the plasma-facing conducting structures [12]. For
disruption handling strategies, avoidance of electromechanical forces typically
corresponds to having the duration of the CQ, commonly referred to as the CQ
time, be within a certain interval, bounded from below to avoid forces from
eddy currents, and from above to avoid forces from halo currents.

The main concern for high heat loads during the disruption comes from
two sources – heat that is being transported and from a runaway current
colliding with the tokamak wall. When the magnetic surfaces are broken up
and the magnetic field lines are stochastic, the field lines can intercept the walls,
causing heat to be transported into the wall [13]. How high the total heat load
is depends on how much thermal energy is being carried by the transported
charged particles of the plasma and the size of the area over which the energy is

43
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spread out. The main strategy of minimizing heat loads due to heat transport
is to increase radiative heat losses. Radiative heat losses are typically more
uniformly spread than transported heat losses, and melting is mainly caused
by relatively localized heat loads. Although there is a risk of melting caused
by radiative losses, especially if they are not sufficiently uniform [54], the risk
is lower than melting caused by transported heat losses.

Similarly, if a significant runaway current is generated, it can carry a
significant fraction of the stored magnetic energy which could be deposited
into the tokamak wall in a highly localized collision [5]. Since the criterion
for runaway electron production is intricately linked to the electric field, as
quantified by the Connor-Hastie field (see equation (2.2)), one strategy of
runaway electron avoidance is to ensure a large critical electric field, mainly
through increasing the density of the plasma since Ec ∝ ne. If a runaway seed
is generated, the expulsion of these electrons from the plasma via perturbations
of the magnetic field could prevent the development of a significant runaway
current through avalanche.

Massive material injection (MMI) is a disruption mitigation strategy which
can encompass mitigation with regard to electromechanical forces, transported
heat loads and runaway electrons. The basic principle is to inject large amounts
of cold and electrically neutral material into the hot plasma at the beginning
of the disruption, with the type and amount of injected material being control
parameters. The amount of material injected affects the temperature decay rate,
and subsequently the CQ time, relevant for avoiding high electromechanical
forces. Furthermore, injecting more material increases the plasma density, and
subsequently the critical electric field, which in turn reduces the risk of runaway
seed generation. Additionally, including atomic species with highly radiative
properties reduces the heat loads due to transported heat losses. The most
common MMI strategies involve injecting a combination of hydrogen isotopes,
e.g. deuterium, to dilute the plasma, and noble gases, e.g. neon, to induce
radiation, either in the form of gas injections or as shattered cryogenic pellets.

However, the different problems to be mitigated pose conflicting require-
ments on the injected material quantity and composition, especially since the
runaway electron dynamics are not only affected through the critical electric
field. If the TQ is fast, e.g. because of high radiative losses due to injected noble
gases, there is a significant risk of hot-tail runaway seed generation [55]. Fur-
thermore, the increased electron density can significantly amplify the avalanche
generation (∝ ne) due to the increased number of target electrons available for
avalanching [38]. Care must therefore be taken in order to design the optimal
disruption mitigation strategy, and disruption mitigation optimization is highly
relevant during the development of future experimental devices such as SPARC
and ITER.

4.1 Quantifying a disruption

To optimize disruption mitigation, the disruption evolution should be quantified
by a scalar value that represents how successful the mitigation strategy is. Since
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successful mitigation corresponds to low electromechanical forces from eddy
and halo currents, as well as low heat loads from transported heat losses and
runaway beam collisions with the wall, the scalar measure of the mitigation
success can be obtained by quantifying and combining these, as has been done
in papers B, C and D.

The CQ time can be estimated using [12]

τCQ =
tIΩ=0.2It=0

p
− tIΩ=0.8It=0

p

0.6
, (4.1)

i.e. through extrapolation based on the times at which the Ohmic current makes
up 80% and 20% of the pre-disruption plasma current It=0

p . The transported
heat load can be quantified by the fraction of the initial plasma kinetic energy
which has been lost from the plasma due to energy transport ηtr. Finally, the
runaway current is commonly quantified either by its maximum value or by its
value at the time when it reaches 95% of the remaining total plasma current,
and the two different options are compared in paper C.

Additionally, these papers have also accounted for the final Ohmic current
IΩ in the disruption optimization, to avoid uncertainties with regard to the
current decay at times later than simulated. If the Ohmic current is large at the
end of the simulation, the CQ duration is longer than ideal, and additionally,
the CQ time estimation might not be accurate. Furthermore, a significant part
of this current can still be transformed into runaway current.

To obtain one scalar value from the CQ time, transported heat load, runaway
current and final Ohmic current, these representative figures of merit must be
combined. For this we might use a weighted Euclidean norm of order p, such
that the mitigation success is quantified by

L =
[(
cτCQfτCQ(τCQ)

)p
+ (cηtrfηtr(ηtr))

p

+(cIrefIre(Ire))
p
+ (cIΩfIΩ(IΩ))

p
]
1/p

,
(4.2)

where the weights c and functions f are chosen to yield a representative
quantification. For example, as the CQ time should not be minimized, but
rather confined to a specified interval, the function fτCQ

should be devised to
“reward” CQ times within the interval and “penalize” CQ times outside of the
interval.

4.2 Bayesian optimization

Bayesian optimization is a common type of black box optimization method,
used to optimize functions where there is no mathematical expression relating
the function argument to the function value. More specifically, black box
optimization refers to optimization methods which do not depend on the
structure of the function to be optimized. Instead, they map inputs to outputs
and base their progression on the values of these input-output pairs. The core
element of Bayesian optimization is the use of Bayes’ theorem for determining
the optimization progression. Bayes’ theorem states that the conditional
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probability of an event A given an event B is p(A|B) = p(A)p(B|A)/p(B) [56],
and provides a way of determining the probability of an event based on prior
knowledge.

Fundamentally, Bayesian optimization uses Bayes’ theorem applied to
probability distributions for the objective function or cost function L which is
to be optimized. In the context of Bayesian optimization, this means inferring
the objective function value ϕ = L(x) of all points x of a finite domain.

Bayes’ theorem for probability distributions of the objective function at a
specific point x is

p(ϕ|x, y) = p(ϕ|x)p(y|x, ϕ)
p(y|x) , (4.3)

where the variable y is the measurement received when observing the objective
function L at x [57]. Here, p(ϕ|x) is called the prior distribution, and describes
our prior knowledge of how plausible different function values ϕ are, before
observing any data. The likelihood function p(y|x, ϕ) describes the likelihood
of getting the measurement y as a function of ϕ = L(x) when making an
observation of the objective function at x. These two probability distributions
determine the posterior distribution function p(ϕ|x, y), which describes the
probability distribution over the objective function value ϕ given x and the
measurement y observed at x. The denominator of (4.3) is called evidence and
ensures the normalization of the posterior,

p(y|x) =
∫
p(ϕ|x)p(y|x, ϕ)dϕ. (4.4)

This can be extended to find the posterior distribution function of the entire
function L(x)

p(ϕ(x)|D) =
p(ϕ(x)|x)p(D|x, ϕ(x))

p(D)
, (4.5)

where ϕ(x) represents the actual function values in a subset to the domain
of L. Here, the knowledge we have about the objective function is collected
in the data set D = {(xi, yi)}Ni=1, which consists of N observation pairs –
measurements yi observed at position xi.

In order to use (4.5) to make viable predictions for the objective function,
an assumption of the nature of the probability distribution of ϕ(x) is needed.
In Bayesian optimization, it is assumed that the objective function value at
every point of the function domain is a random variable. Since the domain
is continuous, this is equivalent to having an infinite collection of random
variables, which is the definition of a stochastic process [57]. An especially
common stochastic process used for Bayesian optimization is the Gaussian
process (GP), in which the random variables are distributed according to
multivariate Gaussian distributions. A GP on the objective function L(x) is
specified by a mean function µ(x) = E[ϕ|x], which determines the expected
function value ϕ = L(x) at any x, and a covariance function, or kernel,
K(x,x′), which measures the correlation between ϕ for points x and x′ [57],
and determines the variance σ(x)2 of the GP. The mean function µ(x) and
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f (x) D (x∗, y∗) µ(x)± σ(x) EI[µ(x)] (xnew, ynew)

Figure 4.1: Illustration of the key elements of Bayesian optimization. The
objective function is plotted in black (dashed) and the samples included in the
dataset D are marked by red circles, except for the current maximum y∗ which
is marked by a star. The mean function µ(x) with one standard deviation,
determined by the kernel, is plotted in yellow and the EI acquisition function
is plotted in purple, with the suggested next sample indicated by a purple
diamond.

standard deviation σ(x) are illustrated for an example Bayesian optimization
in figure 4.1.

The covariance function K(x, x′) can be defined in different ways, and
therefore needs to be specified before a GP can be used. One widely used kernel
is the Matérn kernel, which determines the covariance between two points based
on the Euclidean distance between them – points that are closer to each other in
the function domain are assumed to be more strongly correlated [57]. The exact
mathematical form of the Matérn kernel depends on a “smoothness” parameter
ν, which determines how smooth the functions drawn from the GP should be.
In turn, this impacts the smoothness of the mean function determining the
expected values of the objective function. The suitable choice of ν depends on
the expected function behaviour of the objective function. More specifically,
the sample paths obtained from a Matérn kernel based GP with smoothness
parameter ν is ⌈ν⌉ − 1 times continuously differentiable, i.e. once differentiable
if ν = 3/2 and twice if ν = 5/2.

The expected function behaviour that is obtained from the GP is used
to inform the optimizer about which point x to sample next, based on some
kind of strategy. This strategy for determining which point to sample next,
given the expected function behaviour, is called the acquisition function, and
its purpose is to determine which new point in the domain would yield most
information regarding the position of the optimum of the objective function.
There are several kinds of acquisition functions, and a commonly used one is
the expected improvement (EI) acquisition function. Using EI, the new points
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are selected based on the maximum of the expected improvement

xnew = argmax
x

[E[I(x, y∗)]] = argmax
x

[∫
I(x, ϕ, y∗)p(ϕ|x,D)dϕ

]
, (4.6)

where

I(x, ϕ, y∗) =

{
max(ϕ− y∗, 0) (for maximization),

max(y∗ − ϕ, 0) (for minimization),
(4.7)

is a measure of the improvement [58]. Here, y∗ is the optimal objective function
value encountered so far.

As with many stochastic optimization algorithms, the concepts of explora-
tion and exploitation are relevant [57]. An optimizer which favours exploitation
prefers to look for the optimum close to the best candidate for an optimum
found so far. On the other hand, if exploration is favoured, the optimizer prefers
to look for the optimum in regions far from other observations where the un-
certainties are large. In Bayesian optimization, the exploration–exploitation
trade-off is modelled in the acquisition function. This trade-off is not paramet-
rized in the original EI acquisition function, but the acquisition function can be
modified to account for it. In the Bayesian-Optimization Python module [59],
the EI has been modified by introducing an exploration-exploitation trade-off
parameter, ξ, to (4.6) according to

I(x, ϕ, y∗) = max(ϕ− y∗, 0) → max(ϕ− y∗ − ξ, 0), (4.8)

where exploration increases with ξ.
To summarize Bayesian optimization as applied to disruption mitigation, the

method starts with a GP prior, determined by the initial knowledge and assump-
tions we have made about the disruption cost function L(τCQ, ηtr, Ire, IΩ). By
using the data set D of already performed disruption simulations, a likelihood
distribution function is obtained which, together with the GP prior, yields a
GP posterior for the disruption cost function. This GP posterior is then used
by the acquisition function to determine the most promising new position, xnew,
in the mitigation parameter space to perform a new simulation in order to
improve the current optimum, yielding a new data point (xnew, ynew). Bayesian
optimization is therefore an iterative process, in which each new disruption
simulation, with mitigation parameter chosen based on the acquisition func-
tion’s proposition, can be added to the data set of disruption simulations D
and the optimization can be repeated with the updated disruption simulation
data set D.

The advantage of using Bayesian optimization is the combination of obtain-
ing the optimum and an estimation for the cost function in the full optimization
domain. Hence, through Bayesian optimization, exploration of the relevant
domain, especially around the optimal areas, can be obtained with relatively
few samples needed, as opposed to a grid search. For these reasons, Bayesian
optimization was used to optimize disruption mitigation in papers B, C and D.



Chapter 5

Summary and outlook

Runaway electrons will be a severe problem for future tokamaks with high
plasma currents, specifically during start-up and disruptions. Developing
strategies for runaway electron mitigation and avoidance in future devices such
as ITER and SPARC is an active field within fusion research. Due to the
serious risks runaway electrons pose to these devices, and the fact that relevant
conditions cannot be accessed in current experiments, numerical exploration of
the operational regimes are required to inform the strategy development. As
the runaway electron evolution is intricately connected to the overall plasma
evolution, it is essential that the numerical plasma models used for studying
tokamak start-up and disruptions are accurate. In such modelling efforts, aside
from the runaway electrons, the electric field, temperature and other particle
populations need to be considered, and effects such as transport of particles
and energy, radiation and inelastic atomic processes need to be accounted for.
With appropriate plasma models in place, it is possible to comprehensively
study different mitigation strategies through explorative optimization. Having
an idea about the optimal mitigation strategies before the start of operation
could help guide and accelerate the experimental advancement.

This thesis focuses on the development of accurate plasma models for
studying runaway electrons during tokamak start-up and disruptions, as well
as using such plasma models for optimizing disruption mitigation. The findings
of the appended papers are highlighted and summarized here, and possible
directions for future research based on this work are also presented.

5.1 Summary of papers

The research presented in the appended papers regard plasma modelling and
optimization of disruption mitigation. Paper A presents a tool developed
to study runaway electrons during tokamak start-up, while papers B and D
describe disruption mitigation optimization of ITER and SPARC, respectively.
In paper C, fluid or kinetic modelling of the runaway seed generation are
compared, and the exploration of different disruption scenarios is realized
through optimization of disruption mitigation in ITER.
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In paper A, the developed start-up simulation tool Stream is presented
and used for studying under which circumstances significant runaway generation
is present or suppressed. The underlying model used for governing the start-up
plasma evolution accounts for the externally applied electric field, incomplete
particle confinement and neutral screening effects, and is described in more
detail in section 3.2. Stream is benchmarked against the start-up simulation
tool DYON [11, 50], and the two codes are found to be in good agreement.

To investigate runaway dynamics during start-up, a simplified ITER first
plasma scenario is studied. The start-up scenario assumed a pure deuterium
plasma, with constant loop voltage and plasma volume evolution. It is found
that for the planned prefill pressure of the ITER first plasma scenario, no
significant runaway current is formed. The reason for this is that the transport
losses dominate the runaway evolution during the period of the start-up when
the electric field is sufficiently strong for runaways to be generated. However,
if the prefill pressure is reduced by a factor of 10, the plasma current is soon
dominated by runaway electrons, as the electric field is sufficiently strong for
runaway generation, even after the formation of closed magnetic surfaces.

The main generation mechanism for this case is Dreicer generation, and not
avalanche, which is usually the dominant generation mechanism in disruption
scenarios with significant runaway currents. For this scenario, with constant
loop-voltage and low prefill pressure, a high electric field to Dreicer field ratio
is maintained throughout the start-up, enabling significant Dreicer generation.
In contrast, during disruptions, a high E/ED is usually only maintained for
brief periods of the thermal quench. This can still be sufficient for Dreicer gen-
eration to form a runaway seed which can be exponentiated through avalanche
multiplication. Notably, the ratio E/ED could be used as a more represent-
ative quantity for start-up runaway generation than the ratio E/Ec, as the
former determines the Dreicer generation, while the latter sets the avalanche
generation.

As a low prefill pressure results in significant runaway formation, suppressing
the runaway electron beam could be achieved by increasing the plasma density
through fuelling. This is also studied in paper A, starting from the same prefill
pressure which generated a significant runaway current, but employing plasma
fuelling starting at different times during the start-up evolution. If the plasma
fuelling is employed too early during the start-up, burn-through could fail,
but employed too late, a significant runaway population can form, reducing
the effectiveness of the plasma fuelling for runaway suppression. The early
use of plasma fuelling for effective suppression of runaway beam formation
is supported by results of the paper. The temperature ramp-up is however
also more efficient for the early fuelling scenarios considered, as the electric
field can more effectively heat the plasma through ohmic heating if the ohmic
component of the plasma current is sufficiently large. This signified that for
start-up scenarios with a large enough runaway population, the burn-through
can fail to due insufficient ohmic heating.

We study disruption mitigation optimization for an ITER deuterium-tritium
H-mode plasma in paper B, using the disruption simulation tool Dream [40].
More specifically, the densities of the injected deuterium and neon during
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massive material injection are optimized. To begin with, only the magnitudes
of the injected densities are optimized, with the density distribution being set
as spatially uniform. Subsequently, we also optimize the radial distribution
with regard to favouring inward or outward peaking. The disruption mitigation
is quantified by the runaway current, transported fraction of the heat loss and
the current quench time, which are combined to obtain one scalar value.

All optima found corresponded to runaway currents of several mega-amperes.
When isolating the dependence of the injected density magnitudes, i.e. when
the radial profiles are uniform, it is found that when high amounts of deuterium
are injected, the runaway dynamics are significantly influenced by deuterium
recombination. With high amounts of injected deuterium, the temperature
decays at a faster rate, increasing the deuterium recombination. Deuterium
recombination decreases the free-to-total electron density ratio, which increases
the avalanching (see equation (2.35)). However, due to the high deuterium
density, and subsequently high free electron density (in absolute terms), the
Connor-Hastie electric field is relatively high at the end of the disruption. This
results in a decaying runaway current, after the current peaks (still at several
mega-amperes, as noted earlier), rather than the formation of a steady runaway
plateau. With lower deuterium densities, the plateau phase is more pronounced,
as the runaway current is kept at a quite steady level.

With increasing neon content, the radiative heat losses are increased, which
affects both the runaway dynamics and the transported fraction of the heat loss.
The runaway dynamics are affected through the temperature balance, as the
first thermal equilibrium after the injected material has been introduced occurs
at a lower temperature for higher radiative heat losses. A lower equilibrium
temperature in turn correlates to a higher electric field to Connor-Hastie field
ratio (E/Ec), corresponding to more efficient avalanching. With high radiative
heat losses, the transported fraction of the heat losses are naturally reduced.
However, a high neon density is not necessarily sufficient for acceptable levels
of the transported fraction of the heat losses – sufficient deuterium densities
are required as well, to dilute the plasma.

When investigating the optimal radial distributions for the injected deu-
terium and neon densities, it is found that an edge-peaked neon density is
favourable. An edge-peaked radial distribution can allow for sufficient radiative
heat losses at the edge, while limiting the effect of the neon on the runaway
dynamics close to the core, where runaway generation is most significant. Fur-
thermore, a moderately uniform radial distribution for the deuterium density
is most advantageous. More specifically, the edge deuterium density is less
important for the runaway evolution, meaning that the essential consideration
for the deuterium density is that it should be at an adequate level in the core
(i.e. not too high nor too low).

Disruption mitigation optimization is further studied in paper C, however
in this paper, the main objective is to compare fluid and kinetic modelling of
the runaway electron seed generation. With this goal in mind, kinetic source
terms are derived for the generation of energetic electrons from tritium beta
decay and Compton scattering. The same ITER-like tokamak set-up is used
as in paper B, but a pure deuterium scenario is studied, in addition to a
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deuterium-tritium plasma scenario. Furthermore, only spatially homogeneous
density profiles of the injected material are considered.

The comparison of fluid and kinetic modelling of the runaway seed generation
showed that hot-tail generation deviated the most. The hot-tail generation
is naturally included in the momentum space particle flux determined by the
kinetic equation (3.21), while the fluid model uses the analytical formula (2.25).
To derive this analytical formula, spatial transport effects were neglected to
obtain an estimation of the distribution function based on the evolution of the
fluid plasma parameters. Thus, radial transport due to magnetic perturbations
is not considered in the evolution of the distribution, which results in an
overestimation of the hot-tail generation rate. During the TQ, part of the
hot-tail is lost due to the broken flux surfaces, which is accounted for in the
kinetic treatment of the hot-tail generation, but not in the fluid one.

This model discrepancy is not as prominent for the deuterium-tritium
scenario, however, due to the inclusion of the activated sources. Tritium beta
decay and Compton scattering generates energetic electrons with momenta
both above and below the critical one, so that the distribution function for
energetic electrons is not depleted by radial transport. Instead, it reaches a
level where the transport losses are balanced by the generation of new energetic
electrons from tritium beta decay and Compton scattering. Even though some
of these electrons are not initially generated above the critical momentum, they
can run away at a later point, either through momentum space diffusion or
through a rapid decrease of the critical momentum. This effect is not considered
in the fluid models for the activated runaway generation mechanisms. However,
the overestimation of the fluid hot-tail model is found to compensate for this,
such that the fluid and kinetic simulations predicted similar runaway dynamics.

It is found that it is not possible to simultaneously achieve acceptable levels
of the runaway current, transported heat fraction and current quench time in
deuterium-tritium plasmas. Acceptable levels of the transported heat fraction
or the current quench time are always correlated with runaway currents of
several mega-amperes, which is in agreement with the findings of paper B.
For the pure deuterium plasmas however, successful disruption mitigation is
predicted to be possible using the more accurate kinetic simulations, for high
injected deuterium densities and moderate neon densities.

In paper D, disruption mitigation optimization is performed for SPARC.
For the massive material injection, deuterium is combined not only with neon,
but also with argon and helium, to investigate how different choices of noble
gas affects the disruption evolution. As in paper C, radially uniform density
profiles are used for the injected material. We consider the SPARC primary
reference discharge during deuterium-tritium operation. Additionally, the same
initial set-up is also used for a pure-deuterium plasma scenario. For the pure
deuterium plasma, we consider both the artificial case of no Compton scattering,
as well as Compton scattering caused by photons resulting from neutrons of
the deuterium-deuterium fusion reaction. Based on the results of paper C, the
runaway seed generation is treated kinetically, for more accurate results.

For all scenarios considered (i.e. for pure deuterium plasmas with and
without accounting for Compton scattering, as well as for deuterium-tritium
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plasmas) successful disruption mitigation is found to be possible with injection
of deuterium and neon. However, as the activated sources play a greater role in
the dynamics, the area in the injected material density space corresponding to
successful mitigation is reduced. In deuterium-tritium plasmas, it is found to
only be possible for the highest deuterium densities considered. The explanation
for why successful mitigation is possible in the SPARC primary reference
discharge, but not in activated scenarios of ITER, is the lower plasma current
planned for SPARC. In SPARC, the plasma current will be 8.7MA, compared
to the 15MA of ITER’s H-mode scenario. Since the avalanche generation
is exponentially sensitive to the magnitude of the plasma current, the ITER
scenarios yield more runaway current.

It is noted that there exists a trade-off between minimizing the runaway
current and the transported fraction of the heat loss, in agreement with the
findings of paper B and C. In general, the lowest runaway currents correspond
to low neon densities, while the lowest transported heat fractions correspond
to high neon densities. As previously noted, high neon densities cause high
radiative heat losses, which reduces the transported fraction of the heat loss,
but it also leads to increased avalanching. Furthermore, the trade-off between
minimizing the runaway current and the transported heat fraction is found to
be less favourable for injection of helium or argon, compared to neon. Injection
of helium results in less effective heat losses through radiation, while injection
of argon enhanced the avalanche significantly, due to its high atomic number,
resulting in a high total electron density.

5.2 Outlook

As electron runaway is inherently a momentum space phenomenon, certain
situations require kinetic modelling for sufficient accuracy. One of the main
findings of this thesis is the significant impact which a kinetic treatment of
the runaway seed generation had on the runaway evolution, illustrating the
need for kinetic modelling of runaway electron dynamics. However, in all
the work included in this thesis, the avalanche generation is accounted for
using a fluid description. The reduced kinetic model, which is described in
section 3.1, can reliably model seed generation due to the relatively low energies
of the electrons involved in the primary generation. Avalanche generation,
on the other hand, involves electrons of relativistic momenta, meaning that
this reduced model can not be used to describe secondary generation. For a
kinetic treatment of the avalanche generation, the runaway electrons, rather
than the superthermal electrons, need to be evolved kinetically. There are
avalanche operators of different levels of sophistication that can be used. An
approximate model was developed by Rosenbluth and Putvinski [19], which is
based on the assumption that all runaway electrons involved in the avalanche
generation have essentially infinite energy and travel parallel to the magnetic
field lines, yielding a spectrum of secondary runaways. Due to this assumption,
however, the spectrum of the generated secondary runaways extends to infinite
energies, which is not physical. An avalanche operator accounting for the
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energy distribution of the incoming runaway electrons was derived by Chiu
et al. [60]. As the energy distribution of the incoming runaway electrons is
considered, the energies obtained by the secondary runaways are reasonably
limited. One of the most accurate avalanche operators was derived from the
Boltzmann operator [61], which additionally considers the distribution in pitch
angle and conserves particle number and momentum. Using any of these
three avalanche operators would improve the accuracy of the runaway electron
evolution. However, since using these avalanche operators requires resolving the
momentum and pitch angle distribution of the runaway population, simulations
with kinetic avalanche generation would be computationally more expensive.
Using kinetic avalanche generation during optimization might therefore not be
beneficial enough to motivate the higher computational cost. Instead, fluid
avalanche generation could be used for the sampling during the optimization,
and kinetic avalanche for a number of selected samples, to validate the results
of the optimization.

To further improve the start-up model for studying runaway electrons,
Stream could be extended to include both a radial dependence and the
possibility to use kinetic plasma models. Compared to the kinetic model used
to describe disruptions, it is mainly the effect of transport on the distribution
function that would require modification. Specifically, the sound speed should be
exchanged for the parallel velocity component, for a more accurate description
of the parallel transport.

To include the radial dimension in the start-up model, it would no longer be
desirable to use the two-volume method to account for neutral screening effects.
A consequence of neutral screening is that neutrals and charged particles occupy
different subsets of the vacuum vessel volume, which affects particle and energy
balance. The two-volume method solves this problem by weighting the terms
in the balance equations differently (see section 3.2 for more details). Having
a radial dimension would instead mean that the different subvolumes would
be spatially resolved. This would require modelling not only the plasma, but
the full vacuum vessel, to fully account for the neutral screening effects. This
could perhaps be done similarly to the 1D diffusion model used in Ref. [62].

Finally, the disruption models used for the optimization could be further
improved with regard to the MMI model, which is currently relatively simplistic.
In its current form, the deposition of the neutral material is assumed to be
instantaneous and uniformly distributed. In reality, the material would either
be injected in the form of shattered pellets or as gas, which both would require
time to reach the plasma core, from the edge. This would mean that, radially,
the effect of the neutral material would not affect the plasma synchronously,
which could impact the plasma evolution. There are models for radial transport
of neutrals and ions in Dream, which could be employed during optimization
to study the effect of the temporal and spatial dependence of the MMI. These
models are not self-consistent, however, and the transport coefficients need to
be known and prescribed. Still, using such a model and employing suitable
transport coefficients would improve the accuracy and predictive capability of
the simulations used during the optimization.
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