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Abstract
The sudden loss of confinement of the energy content of fusion plasmas in off-normal
events, called disruptions, are among the most severe threats to the future of fusion
energy based on the tokamak design. An efficient disruption mitigation system will
therefore be of utmost importance for future large, high-current devices such as
ITER. The potentially greatest threat to be mitigated is posed by currents carried by
highly energetic electrons, called runaway electrons, which may cause severe damage
upon wall impact. The disruption mitigation system must also ensure a sufficiently
homogeneous deposition of the thermal energy on the plasma-facing components,
and avoid excessive forces on the machine due to currents flowing in the surrounding
structures. The currently envisaged mitigation method is to make a massive material
injection when an emerging disruption is detected, attempting to better control
the plasma cooling and energy dissipation. In this work, we perform numerical
simulations assessing the performance of the most up to date mitigation schemes
based on shattered pellet injections in an ITER-like setting, with a particular focus
on the generation of runaway electrons. The main mitigation scheme investigated is
a two-stage shattered pellet injection, with a diluting deuterium injection followed
by a neon injection aiming to radiatively dissipate the plasma energy content.

Our studies indicate that the diluting deuterium injection can efficiently reduce
the runaway generation due to the hot-tail mechanism, by allowing for an intermedi-
ate equilibration of the superthermal electron population between the injections. The
fraction of the initial thermal energy content conducted to the plasma-facing compo-
nents is also reduced compared to a single-stage injection with the same composition,
reducing the localised heat loads. During non-nuclear operation, the maximum
runaway current was found to be reduced to acceptable levels with realistic two-stage
injection parameters. On the other hand, during nuclear operation, the unavoidable
runaway seed from tritium decay and compton scattering was found to be amplified
to several mega-amperes by the avalanche mechanism for all investigated injection
parameters. The reason is that the intense cooling from the injected material leads
to a high induced electric field and a substantial recombination, resulting in an
enhanced avalanche multiplication.

Keywords: fusion plasma, disruption mitigation, shattered pellet injection, runaway
electron
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1
Introduction

The steadily increasing energy consumption around the world will make future
generations demand for reliable and clean energy sources larger than ever before. If
successful, fusion energy has the potential to play a key role in a future carbon-free
energy system. Even if commercial fusion does not become available soon enough to
tackle the most urgent climate changes, it may still be of importance to meet the
increasing energy demand during the later half of this century [1].

A fusion reactor will work by fusing two light nuclei, whose combined mass is
larger than the resulting fused nuclei [2]. The mass difference is released as energy.
The reaction usually consists of a deuterium nucleus (2H) fusing with a tritium
(3H) nucleus, forming an α-particle (4He) and a neutron. The comparatively light
neutron leaves the confined fuel with 80% of the released energy. This energy is then
converted to heat that is used to drive a turbine, which generates electricity.

In many ways, fusion can be regarded as an ideal energy source [3]: The fusion
reactions do not produce any other waste products than helium, making fusion
sustainable from a climate perspective. The hydrogen isotopes used as fuel can be
extracted from ordinary sea water, making the fuel reserves practically unlimited.
The energy production is not weather-dependent, and the fusion energy output can
therefore be adapted to varying demand to a larger extent than weather-dependent
renewable energy sources. The half-life of the radioactive material produced by
neutron bombardment of the reactor wall is of the order of hundreds of years. This
is about a thousand times shorter than the hundreds of thousands of years for some
of the high level waste produced by a fission reactor. Finally, fusion produces no
by-products that may be used for nuclear weapons.

There are, however, many difficulties involved in realizing a fusion power plant
[4]. In order to fuse two nuclei, the distance between them must be similar to their
de Broglie wavelength. At this point, the probability to overcome the remaining
Coulomb potential barrier by tunneling becomes significant. For this to happen, the
nuclei have to overcome the Coulomb repulsion at larger distances, and therefore they
have to collide at a very high energy. One way to achieve such energetic collisions
is to heat the fuel to a temperature of the order of 108 K. Confining such a hot
fuel and maintaining the conditions necessary for a substantial fusion reaction rate
is a challenging task. The most developed method to overcome these challenges is
so-called magnetically confined fusion, which is introduced in section 1.1.

Although magnetically confined fusion devices allow for a stable confinement
of the fusion fuel during normal operation, they must be prepared for off-normal
events where the confinement is suddenly lost, called disruptions [5]. These events
result in a rapid release of the stored thermal and magnetic energy, which can be
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1. Introduction

very be dangerous for the machine integrity. The basic features of disruptions, their
consequences, and suggested methods to mitigate their impact on the machine are
introduced in section 1.2. However, disruption mitigation in large future fusion
reactors still contains a number of open questions. This is the topic to which this
thesis aims to contribute, by providing specific guidelines to mitigate the effects of
such events.

1.1 Magnetically confined fusion
At the high temperatures necessary for fusion energy generation, the electrons in the
fuel are separated from the atomic nuclei. When this happens, the fuel becomes a
plasma, which may be regarded as a gas consisting of charged particles. Since the
particles are charged, they may be controlled by a magnetic field, making magnetically
confined fusion possible.

When a charged particle is subject to a magnetic field, it follows a gyro-motion
around the magnetic field lines [2]. Naively, one could therefore confine the plasma
by bending the magnetic field into a torus. This is indeed the basic principle behind
magnetically confined fusion. However, the construction of such a magnetic field
inevitably introduces a gradient of the field strength along the major radius of the
torus. For reasons to be described later in section 2.2.2, this magnetic field gradient
makes a plasma in a purely toroidal magnetic field intrinsically unstable. To avoid
this instability, a poloidal twist of the magnetic field is introduced. The most studied
design for such a configuration is the so-called tokamak, where the poloidal twist is
achieved by inducing a high current through the plasma, of the order of mega-amperes
(MAs).

The tokamak design is utilised by the JET (Joint European Torus) device,
currently holding the record for the ratio of the generated fusion power to the
supplied heating power - the so-called Q-factor - at 0.67. It is also used for future
devices aiming at producing a net gain of fusion energy. These devices include
SPARC, under development by Commonwealth Fusion Systems and Massachusetts
Institute of Technology [6], STEP (Spherical Tokamak for Energy Production) under
development at the Culham Centre for Fusion Energy [7], and ITER, which is
currently under construction in France [8]. ITER will be the largest among the next
generation of fusion devices, and is the main concern of this thesis. The ITER project
is an international collaboration between the European Union, United States, China,
Russia, South Korea, India and Japan, aiming for a Q-factor of 10. In order to
increase the Q-factor, next-generation devices will store significantly larger thermal
and magnetic energies than current experiments. This increases the severity of the
threat posed by disruptions, to which we now turn our attention.

1.2 Tokamak disruptions
Disruptions are a type of operational failure, where the plasma confinement is
suddenly lost, and the energy contained in the plasma is dissipated to the surrounding
structures. The thermal energy may be released over a time scale as short as 0.1–1
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1. Introduction

ms. In the nuclear operation phase of ITER, this energy will be around 300 MJ. The
dissipation time scale for the magnetic energy associated with the plasma current is
1–2 orders of magnitude longer, depending on the size and operation parameters of
the tokamak. For ITER-like parameters, the magnetic energy is somewhat larger
than the thermal energy, about 1 GJ.

The rapid release of these energies might cause severe damage to the device [5, 9].
The rapid release of the thermal energy can cause a substantial sputtering, or even
melting, of the wall material. A rapid current drop can induce large eddy currents
in the structures surrounding the plasma. The interaction between these currents
and the strong magnetic fields used to control the plasma may result in large forces
being exerted on the machine. Conversely, if the current decay is slow, the plasma
control might be lost while there is a substantial current remaining in the plasma.
The currents in the outer layers of the plasma may then begin to flow through the
surrounding structures, forming a so called halo-current. Such a current may also
lead to large forces being exerted on the machine. Finally, the potentially most
severe threat to a reactor-scale tokamak, is the generation of extremely energetic
electrons, called runaway electrons. These electrons may cause a significant melting
of wall material upon wall impact. Their existence is made possible by the nature of
the energy dependence of the drag force felt by a charged particle moving through
the plasma, together with the induction of a large electric field in the plasma during
the disruption. These phenomena are described in the next subsection.

1.2.1 Runaway electrons
In a plasma, the collisional interaction between the particles is dominated by the
Coulomb force resulting from their charge [4]. This leads to the somewhat counter-
intuitive phenomenon that the momentum change during a collision decreases with
the relative initial momentum of the colliding particles. This may be explained
by the fact that particles with a higher relative momentum spend less time in the
vicinity of one another, giving the Coulomb force less time to cause a momentum
change. As a result, the drag force felt by a charged particle moving through the
plasma has a decreasing trend at high momenta.

Consider now the case where the plasma is subject to a strong electric field.
The decrease in the drag force at high momenta enables the force exerted by the
electric field to overcome the drag force for particles with a momentum higher than
a critical value. These particles can therefore be accelerated to extremely high
energies, becoming so-called runaways [10]. Typically, the light electrons become true
runaways, and are the runaway species we are concerned with here, as ion runaway
acceleration is limited by friction with the bulk electrons [11].

During a tokamak disruption, the fast temperature drop leads to the induction
of a large electric field, which can lead to the generation of runaway electrons
[5]. This electric field induction is due to the relation between the temperature
and conductivity of the plasma. The conductivity is inversely proportional to the
drag force resulting from the thermal motion of the plasma particles, and therefore
the conductivity increases with temperature. Thus, a rapid temperature drop is
accompanied by a rapid drop in the conductivity. However, the inductive properties
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1. Introduction

of the plasma current set a lower limit on the time scale over which the current can
change. As a result, an electric field must be induced during the fast temperature
drop to compensate for the associated drop in the conductivity.

The presence of an electric field only enables the existence of runaway electrons.
Actual generation of runaway electrons requires some mechanism that can accelerate
electrons above the critical momentum, where the force from the electric field
overcomes the drag force. During a tokamak disruption a number of such mechanisms
are active.

One runaway generation mechanism which is always active, as long as the electric
field is high enough to enable the existence of runaways, is the so-called Dreicer
mechanism [12]. It builds on the fact that the distribution of the electron momenta
tends to equilibrate towards a Maxwellian. The high-energy tail of the Maxwellian
might have particles with momenta higher than the critical one, allowing those
electrons to become runaways. When the high-energy tail is accelerated, the rest of
the electrons re-equilibrate towards a Maxwellian, so the tail is re-populated. This
process repeats itself, allowing a steady runaway generation.

Another runaway generation mechanism builds on the comparatively slow cooling
of the hot tail of the pre-disruption momentum distribution [13–15]. Due to their
lower collisionality, these hot-tail electrons equilibrate much slower to the much lower
post-disruption temperature than the less energetic electrons. As the induced electric
field increases, the hot tail of the initial distribution can be caught above the current
critical energy for runaway acceleration, before they have time to thermalise. This
mechanism, called the hot-tail mechanism, can produce a burst of runaway electrons
in the early stages of the disruption.

The nuclear activity in a deuterium-tritium plasma provides two additional
mechanisms for runaway generation [16]. The tritium itself undergoes β−-decay,
and the emitted electron might have a momentum above the runaway threshold.
Moreover, γ-photons emitted from the activated wall can accelerate electrons above
the runaway threshold by Compton scattering.

Finally, an existing runaway population can amplify itself through the so-called
avalanche mechanism [17]. An existing runaway electron can collide with a slower
electron in such a way that both electrons have a momentum above the runaway
threshold after the collision. This mechanism gives rise to an initially exponential
growth of the runaway population, and therefore even a very small seed of runaways
generated by any of the above mechanisms can be amplified to problematic propor-
tions. This mechanism is exponentially sensitive to the plasma current [18], and is
therefore particularly problematic for large, high-current, reactor-scale tokamaks
such as ITER.

1.2.2 Mitigation techniques
The potential damage resulting from a disruption described above poses strict
requirements for disruption mitigation [5]. Three main tasks must be accomplished
by a tokamak disruption mitigation system. The first is to minimize the localized
heat loads on the plasma facing components, by spreading the heat loads over as
large an area as possible. Secondly, the disruption mitigation system must control
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the time scale for the current decay so that it is long enough to avoid excessive eddy
currents, but short enough to avoid excessive halo currents. Finally, the current
carried by runaway electrons impacting the wall should be minimized.

The currently envisaged disruption mitigation method is to inject dissipative
material into the plasma as soon as the emerging disruption is detected. The injection
primarily consists of hydrogen isotopes and/or noble gases such as neon or argon.
As this material enters the plasma in the form of neutral atoms, it may emit atomic
line radiation when excited by exposure to the plasma. This radiation can release
the thermal energy isotropically, reducing the maximum localised heat loads. The
cooling properties of the injected material can also be tuned to gain some control
over the temperature after the initial drop, which in turn determines the current
decay rate.

Moreover, as the injected material ionizes, the electron density increases. This
leads to an increase in the drag force felt by the electrons in the plasma, which
reduces the runaway generation. Recent work has however indicated that this
suppression of the runaway generation may only work to a limited extent [19]. The
reason is that a larger injection is accompanied by a stronger radiative cooling.
For sufficiently large injections, the plasma becomes cold enough for the injected
ions to recombine with the free electrons, before the runaway generation phase is
over. The bound electrons contribute to the number of target electrons for the
avalanche mechanism to practically the same extent as free electrons, an effect that
is only partially compensated by their contribution to the drag force [20]. For this
reason, recombination can substantially enhance the avalanche, which might limit
the prospects for runaway suppression by massive material injection. Runaway
suppression in high-current tokamaks thus remains an open question.

Conventionally, the injected material is delivered as a gas puff from a pressurized
vault [5]. While this technique is comparatively simple, it comes with a number
of disadvantages. The injected gas ionizes rapidly when exposed to the still hot
plasma. When ionized, the injected material becomes tied to the magnetic field,
which substantially slows down the transport towards the plasma core. Moreover,
the gas injection introduces a perturbation to the magnetic field, which accelerates
the growth of the plasma instabilities whose detection indicates the disruption onset.
As a result, the disruption might fully begin before the injected material has reached
all parts of the plasma.

Another approach, that can provide better core penetration, is to inject material
in the form of a solid, cryogenic pellet. The exposure to the plasma causes the pellet
to ablate and deposit its content along its trajectory. If desired, the ablation of
the pellet can be made more efficient by shattering the pellet into smaller shards
before it enters the plasma, forming a so-called shattered pellet injection (SPI). This
technique has been chosen as the baseline for the disruption mitigation system at
ITER [21].

The details of the design and the operation parameters for the disruption mit-
igation system at ITER, as well as other reactor-scale devices, are still an open
question. A major difficulty associated with this question is that the solutions to
the three main issues to be addressed by the disruption mitigation system to some
extent conflict with each other. For example, the radiative dissipation of the thermal
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energy practically favours as large an injection as possible. On the other hand, a
large injection might result in too low a temperature after the temperature drop,
leading to a fast current quench time. In addition, rapid cooling increases the hot-tail
runaway generation [22, 23].

A recently suggested method attempting to circumvent these issues is to divide
the injection into two stages [24]. The first injection would consist of a large amount
of pure deuterium. The purpose of this stage would be to cool the plasma through
dilution, by a factor 10–100, without significantly perturbing the magnetic field
configuration or radiating away any substantial amount of thermal energy. A few
milliseconds later, a smaller neon injection would follow, which radiatively dissipates
the thermal energy. The division of the cooling into two steps gives the hot tail
time to equilibrate at an intermediate temperature before the runaway generation is
initiated. In that way, this scheme could potentially lead to an efficient suppression of
the hot-tail runaway generation. In addition, if the plasma perturbation destroying
the magnetic field configuration is initiated at a lower temperature, the slower
thermal motion reduces the thermal energy transport. Instead, a larger fraction
of the thermal energy can be dissipated through radiation, reducing the danger of
localised wall hot spots.

The results presented in ref. [24] indicate that it is indeed possible to substantially
cool the plasma through dilution by a deuterium shattered pellet injection, without
destroying the magnetic field configuration. The outcome and optimisation of this
two-stage injection scheme, particularly the runaway generation, has however not
yet been studied in detail. This task is the main subject of this thesis, and is treated
by numerical simulations using the newly developed DREAM (Disruption Runaway
Electron Avoidance Model) code [25]. This tool allows for efficient calculations of
the time evolution of the spatial profiles of the plasma properties such as the density,
temperature and current, as well as the momentum distribution of electrons, during
a tokamak disruption. In this project, it has also been equipped with the capability
to model disruption mitigation by SPI.

1.3 Thesis outline
The remainder of this thesis is structured as follows: In chapter 2, the underlying
plasma physics relevant for the understanding of this work is reviewed. Chapter 3
gives a more detailed description of the physics behind tokamak disruptions and
strategies to mitigate them. The disruption model used in this work is described in
chapter 4. In chapter 5, this model is used to study disruption mitigation in ITER
using a two-stage SPI scheme. As a first step, this study addresses the problem
of optimising the pellet shattering for a given pellet size, in order to achieve core
penetration while minimizing the amount of material passing through the plasma
without being ablated. Using this optimised shattering, the next step is to evaluate
the performance of the disruption mitigation system for a range of pellet sizes, in
terms of the radiative dissipation of thermal energy, current decay time, and runaway
generation. The conclusions are summarised in chapter 6, and areas for further
refinement of the model are discussed.
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2
Review of the underlying plasma

physics

As the fuel in a fusion device is in the plasma state, an understanding of plasma physics
is of utmost importance for the study of fusion devices. This chapter therefore gives
an overview of the plasma physics necessary for the analysis of tokamak disruptions
presented later in this work. In section 2.1, we give a formal definition of a plasma,
and discuss some of its basic properties. Section 2.2 describes the motion of charged
particles in an electromagnetic field, and how the properties of this motion can be
used to confine a plasma in a tokamak. Next, section 2.3 describes the collisional
interaction between particles in a plasma, and scaling laws for the collisional features
relevant during tokamak disruptions are derived. Finally, section 2.4 introduces the
theoretical framework underlying the detailed plasma modelling performed in this
work.

2.1 Definition and basic properties
If a gas is heated to a high enough temperature, the electrons will eventually be
separated from their atomic nuclei. The resulting state is called a plasma, and is
often referred to as the fourth state of matter, following the solid, liquid and gas state
[4]. In order to achieve deuterium-tritium fusion, the fuel must be heated to about
1.5 · 108 K, which is well above the temperature needed to enter the plasma state [2].
In plasma physics, the temperature is usually measured in electronvolts (eV) referring
to the typical energy kBT of the thermal motion of the particles, where kB is the
Boltzmann constant. A temperature in Kelvin differs by a factor of e/kB = 11592
K/eV from the temperature given in eV, where e is the elementary charge.

In order to attain the characteristic properties of a plasma, however, the set of
particles must have the properties called quasi-neutrality and collective behavior [4].
These conditions set constraints on the length scale, time scale and particle density.
Collective behaviour refers to the fact that charged particles in a plasma interact
with many other particles at the same time through long-range electromagnetic
forces. This situation is very different from neutral particles, which mostly interact
through close, pair-wise, collisions. To fulfill the definition of a plasma, the long-range
interactions must dominate over the close collisions with neutral particles. For this
to be the case, the collision frequency with neutral particles must be low compared
to the frequency of the fundamental oscillations in the plasma.

Quasi-neutrality means that the net charge of the plasma is neutral over macro-
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2. Review of the underlying plasma physics

scopic length scales, although charge imbalances occur at microscopic scales. In a
plasma, this is achieved as the particles surrounding an emerged charge imbalance
react to this imbalance due to the Coulomb force, rearranging themselves in a way
that screens out the imbalance as seen from some distance away. This phenomenon is
called Debye screening [4]. If one, for instance, introduces a positive point charge in
a plasma, it will attract the nearby electrons, and in that way increase the electron
density in the vicinity of the point charge. The negative charge of the extra electrons
will then cancel the positive charge of the point charge except at very short distances.
The length scale for this screening can be calculated assuming the electrons follow a
Boltzmann distribution. In that case, their density is proportional to exp (eφ/(kBT ))
where φ is the electric potential. The electric potential as a function of the distance
r from the point charge can be shown to follow the Coulomb potential multiplied by
a factor of exp (−r/λD), where [4]

λD =
√
ε0kBT

n0e2 . (2.1)

Here, ε0 is the dielectric constant and n0 is the background (unperturbed) ion particle
density. The quantity λD is called the Debye length, which is a typical length scale
for the screening of the point charge. In order for quasi-neutrality to occur, the
length scale of the plasma must be much longer than this length scale. Moreover, for
the Boltzmann statistics to be valid, the number of particles within a distance λD
must be large, which poses a constraint on the particle density.

2.2 Magnetically confined plasmas
Due to the high temperatures in a plasma, they can not be confined in ordinary
containers. However, since the particles in a plasma are charged, it is possible to
control them by the use of magnetic fields. The goal of this section is to provide
an understanding of how this is done in devices called tokamaks, which are the
most common design for present day fusion experiments. Although the collective
behaviour of the particles in a plasma is essential for the understanding of magnetic
confinement, it is instructive to start with understanding the motion of a single
particle in prescribed electromagnetic fields. This is the subject of section 2.2.1. We
then proceed by applying these phenomena to the circumstances representative of a
tokamak in section 2.2.2.

2.2.1 Charged particle motions in electromagnetic fields
To start with, we consider the motion of a charged particle in a homogeneous and
constant magnetic field, without the presence of an electric field. A particle of
charge q moving with velocity v in a magnetic field B is subject to the Lorentz force
F = qvB, directed perpendicularly to both the magnetic field and the motion of the
particle [4]. In the absence of other forces, the particle will then follow a circular orbit
in the plane perpendicular to the magnetic field, with a centripetal force equal to
the Lorentz force, while moving freely along the magnetic field lines. This tendency
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of charged particles to stick to a fixed circular orbit around the magnetic field lines
forms the foundation of plasma confinement by the use of magnetic fields [2]. The
circular motion is called gyro motion or Larmor motion, and can be shown to have a
rotation angular frequency of [4]

ωL = |q|B
m

(2.2)

and a radius [4, p. 20]
rL = mv⊥

|q|B
, (2.3)

where v⊥ is the velocity perpendicular to the magnetic field.
In more general electromagnetic field settings, however, the center of the gyro

motion, called the guiding center, might be subject to drifts across the field lines.
We now consider the case where we add a homogeneous, constant, non-zero electric
field. The component of the electric field in the plane perpendicular to the magnetic
field will then affect the gyro motion differently during different parts of the gyro
motion. When the particle moves in the same direction as the electric field, its speed
increases, and when it moves in the direction opposite to the electric field it decreases.
Since the change in speed is accompanied with a proportional change in the radius
of the gyro motion, the radius of the gyro motion will be larger during one half of
the gyrations than the other. Averaged over a whole gyration, this causes a net
drift called the E × B drift (pronounced “E cross B drift”) of the guiding center
perpendicular to both the magnetic and electric field. This process is illustrated in
the left panel of figure 2.1. Quantitatively, the guiding center velocity of this drift
can be shown to be [4]

vE×B = E×B
B2 . (2.4)

An important feature of this drift velocity is that it is independent of the particle
charge, because the charge dependence of the Lorentz force and the force from the
electric field cancel each other.

A similar drift emerges if there is a gradient in the magnetic field strength,
with the important difference that this drift is charge-dependent. A gradient in
the magnetic field makes the radius of the gyro motion longer in the part of the
gyration where the magnetic field is weaker compared to the part where it is stronger.
This results in a drift perpendicular to both the magnetic field and its gradient, as
illustrated in the right panel of figure 2.1. This drift is referred to as the ∇B-drift
(pronounced “grad B-drift”). Quantitatively, this drift can be shown to be given by
[4]

v∇B = mv2
⊥

2Bq
B×∇B
B2 . (2.5)

2.2.2 The tokamak design
Based on the principle that charged particles follow magnetic field lines, an intuitively
appealing way to confine a plasma is to establish a magnetic field with closed field
lines, such as a toroidal field. This is also the basic principle behind magnetic
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Figure 2.1: Particle trajectories for an ion and electron, starting from the origin,
with different prescribed electric and magnetic field settings: (Left) a constant
uniform magnetic field pointing in the positive z-direction (out from the paper) and
a constant uniform electric field pointing in the positive y-direction, giving rise to an
E×B-drift, and (right) a constant magnetic field pointing in the positive z-direction
with a uniform gradient in the negative y-direction, giving rise to a ∇B-drift. The
gyro-radii and speeds are chosen equal for visibility.

confinement fusion devices, including the so-called tokamak [2]. However, due to the
particle drifts explained in the previous subsection, a purely toroidal magnetic field
is not sufficient to confine a plasma.

When bending a magnetic field with straight field lines into a torus, the field line
density becomes larger in the inner part of the torus, referred to as the high field side,
compared to the outer part, referred to as the low field side. The drifts introduced
by this gradient make ions and electrons drift vertically in opposite directions. The
separation of positive and negative charges gives rise to a vertical electric field, which
in turn gives rise to an E × B-drift. This E × B-drift is charge independent, and
makes both ions and electrons drift towards the low field side, out of confinement.
This mechanism is illustrated in figure 2.2.

This issue can be resolved by introducing a poloidal twist to the magnetic field,
i.e. a magnetic field component circulating the short way around the plasma core, as
illustrated in the left panel of figure 2.3 [2]. Such a twist makes the particles circulate
around the plasma in the poloidal direction in a way that averages out the effect of
the vertical ∇B-drift; in the upper part of the poloidal motion, the ∇B-drift drives
the particles away from the plasma center, while in the lower part the ∇B-drift drives
the particle back towards the center. Such a trajectory is illustrated in the right
panel of figure 2.3. In that way, the charge separation, and hence the E ×B-drift
that breaks the confinement, is avoided.

10



2. Review of the underlying plasma physics

∇B

B

∇B−drift

+

−

B

E

E ×B−drift

+

− − − − −

+ + + +

Figure 2.2: Illustration of the drifts causing the loss of confinement in a purely
toroidal magnetic field configuration. (Left) The bending of the magnetic field gives
rise to a gradient towards the inner part of the torus, causing a ∇B-drift, making
positive charges accumulate in the upper part and negative charges in the lower part
of the plasma. (Right) The charge separation gives rise to a vertical electric field;
the corresponding E ×B-drift makes the plasma drift out of the confinement.

In a tokamak, this twist of the field lines is achieved by driving a large toroidal
current through the plasma. In such a configuration, the magnetic field lines can be
shown to circulate in the plasma following nested toroidal-like surfaces called flux
surfaces, sketched in the left panel of figure 2.3 [2]. The term flux surfaces reflects
the fact that these surfaces are surfaces of constant poloidal magnetic flux (and also
approximately constant pressure), so that they can be uniquely characterised by this
flux.

The current is most commonly driven by a transformer-like mechanism, where
the tokamak plays the role of the secondary coil; a time-varying vertical magnetic
field is generated through the tokamak, which drives a current through the plasma by
induction [2]. In order to drive a DC current in the tokamak, however, the current in
the primary coil generating the vertical magnetic field has to vary linearly, which can
only be done for a limited amount of time. The operation of a tokamak is therefore
necessarily divided into several sessions, referred to as pulses, shots or discharges.
Compared to everyday-values, the plasma currents in a tokamak are very large. In
the largest present day tokamak called JET (Joint European Torus), the plasma
current is approximately 2 MA, and ITER plans for an operation at a plasma current
of 15 MA [8].

Such large plasma currents can cause serious problems, due to the large energies
associated with them [26]. In the case of a disruption, a form of operational failure
where the plasma suddenly cools, these energies can cause severe damage to the
surrounding structures. The mitigation of the impact of such events is the main
topic of this work, and a detailed background about disruptions is given in chapter
3. In order to understand the phenomena at play during disruptions, it is however
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Figure 2.3: (Left) Illustration of the magnetic field configuration in a tokamak; the
magnetic field is the sum of a toroidal component generated by external coils (which
are not shown in the figure) and a poloidal component generated by the plasma
current. The resulting magnetic field lines follow helical paths around the plasma,
ordered in a set of nested flux surfaces. (Right) Projection of the guiding center
trajectory of an ion in a tokamak on the poloidal plane, illustrating how the ∇B-drift
is averaged out by the motion along the poloidal component of the magnetic field. A
flux surface with circular cross section, tangential to the ion guiding center trajectory,
is included as reference. The drift away from the flux surface is exaggerated for
visibility.

important to understand another branch of plasma physics, namely the physics of
collisions in a plasma, which is therefore the topic of the next section.

2.3 Collisions in a plasma
As we will see, collisions in a plasma differ quite significantly from collisions in a gas.
Instead of the pair-wise close collisions dominating in a gas, the collisional dynamics
in a plasma is dominated by long-range interactions through the Coulomb force. An
important consequence of this is that, as we will see shortly, fast (or hot) particles are
less collisional than slow (or cold) particles, as opposed to the case in a gas. In this
section, the physics of Coulomb collisions is illustrated, and related to the electrical
conductivity of the plasma and eventually to the runaway electron phenomenon.

2.3.1 Coulomb collisions
A qualitative comparison of the difference between Coulomb collisions and close
collisions prevailing in a gas is illustrated in the left panel of figure 2.4. This
illustration is made using a simple simulation of a particle traveling through a fixed
ion background (corresponding to background particles with a much larger mass than
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Figure 2.4: (Left) Illustration of a neutral atom (black) and two electrons (blue)
with different velocities moving through a background of fixed ions, comparing
electron-ion Coulomb collisions with close collisions with neutrals, and illustrating
the velocity dependence of Coulomb collisions. (Right) Illustration of a single
Coulomb collision between an incident electron and a fixed ion.

the test particle, which would be the case if the moving particle was an electron).
If the particle is neutral, so that the interaction with the background takes place
through close collisions, the resulting trajectory will be made up of straight line
segments with sharp deflections where a collision takes place. If the particle is an
electron, on the other hand, the long-range Coulomb interaction with the background
ions cause the electron to follow a smoothly curved path. For the neutral particle, the
deflection angle is independent of the particle speed, but for the electron interacting
through the Coulomb force, we see that a fast electron is significantly less affected
by the background ions than a slower one. This happens because the time spent in
the vicinity of the ions decreases with an increasing electron speed, without affecting
the interaction force.

The setup for a single Coulomb collision for an electron colliding with a fixed ion
is shown in the right panel of figure 2.4. The ion is assumed here to have an equal
but opposite charge compared to the electron. In the absence of the Coulomb force,
the electron would have a distance of closest approach equal to b as defined in the
figure, which is referred to as the impact parameter. After the collision, the electron
is deflected by an angle α compared to its original direction.

The velocity scaling of the cross section and collision frequency of electron-ion
Coulomb collisions, defined as the rate at which the electron momentum undergoes
an order unity change, can be determined as follows. For Coulomb collisions, the
momentum change is dominated by the accumulated effect of many small-angle
interactions [10]. However, as we are primarily interested in the velocity scaling here,
we may simplify the picture by considering events where the order unity momentum
change occurs due to a single Coulomb interaction. During the main part of this
interaction, the Coulomb force is roughly given by

Fc ∼
e2

4πε0b2 , (2.6)

and is felt during a collision duration time roughly given by tc ∼ b/v. From these
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considerations, we may relate the impact parameter necessary for giving a significant
deflection of the electron to the electron velocity according to

∆p ∼ mv ∼ Fctc ∼
e2

4πε0bv
⇒ b ∼ e2

4πε0mv2 . (2.7)

The cross section can then be estimated according to

σc ∼ πb2 ∼ e4

16πε20m2v4 . (2.8)

The collision frequency can now be estimated by the number of electrons passing
through a cross section of area σc per unit time, according to

ν ∼ nvσc ∼
ne4

16πε20m2v3 . (2.9)

Here, n is the density of electrons or ions, assumed to be equal here for simplicity.
The important take-away here is the 1/v3-scaling, which quantifies the previous
observation that fast particles are less collisional in a plasma. In practice, however,
the particles in a plasma do not all have the same velocity, but usually a thermal,
Maxwellian, distribution of velocities. To estimate the collision frequency for a
thermal plasma, we may therefore replace the velocity v by the thermal speed
vth =

√
kBT/m and obtain the thermal collision frequency as

νth = ne4

16πε20m2v3
th

= ne4

16πε20m1/2(kBT )3/2 , (2.10)

where the main takeaway is that the thermal collision frequency scales as T−3/2.

2.3.2 Conductivity
Having estimated the collision frequency, we may determine a scaling law for the
plasma conductivity. If an external electric field E is applied to the plasma, the
Maxwellian distribution will be slightly shifted, so that it has a non-zero average
velocity δv. This shift in the average velocity is related to the current density
according to j = neδv. The average velocity may be estimated by equating the
accelerating force per electron due to the electric field with the collisional drag force.
Recalling that the collision frequency is defined as the rate at which an electron
undergoes an order unity momentum change, we obtain the scaling Fdrag ∼ mδvν
for the drag force. As collisions among electrons do not alter the total electron
momentum (they only transfer momentum from one electron to another), electron-
electron collisions do not affect the scaling law of interest here (although they do affect
the details of the electron velocity distribution, and should therefore be included in
a complete analysis [10]). For small δv/vth, the relative velocity compared with the
ions is dominated by the thermal motion, and we therefore use the thermal collision
frequency in the expression for the drag force. With these considerations, we may
estimate δv according to

eE = Fdrag ∼ mδvνth ⇒ δv = eE

mνth
, (2.11)
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which gives a relation between the electric field and the current according to

j = neδv ∼ ne2

mνth
E = σE. (2.12)

Here, we have introduced the conductivity σ, which is given by

σ ∼ ne2

mνth
∼ 16πε20(kBT )3/2

m1/2e2 . (2.13)

An interesting note here is that the conductivity is independent of the density,
meaning that it is independent of the number of charge carriers, which might seem
surprising. This can be understood as even though the number of charge carriers
increases with the density, the drag force also increases with the density, and these
effects cancel each other.

A more complete analysis confirms the most important features of equation (2.13),
such as the density independence and the T 3/2-scaling [10]. There are however a few
details missing in this scaling law. If multiple ion species are present, a factor 1/Zeff
is introduced, where the effective charge number Zeff is defined as [10]

Zeff ≡
∑
i

∑
j nijZ

2
ij∑

i

∑
j nijZij

. (2.14)

The effective charge number is a measure of the average charge number (charge
given in terms of the elementary charge) of all the background ions, nij and Zij
are the density and charge number respectively of charge state i of ion species j.
Moreover, if the effect of electron-electron collisions is taken into account, another
dimensionless factor of order unity is introduced, which is equal to 0.51 for Zeff = 1
and approaches 1 for large Zeff [10]. Finally, the conductivity is affected by the
fact that the momentum change is dominated by the accumulated effects of many
small-angle collisions, rather than the single large-angle collisions considered when
obtaining the scaling law. While this does not alter the scaling with the dimensional
properties, it introduces a dimensionless factor ln Λ, called the Coulomb logarithm, to
the collision frequency, leading to a factor 1/ ln Λ in the conductivity [4]. Here, Λ is
defined as Λ = 〈λD/b〉, that is, the average over the Maxwellian velocity distribution
of the ratio λD/b with the impact parameter b related to the velocity according to
equation (2.7). The Debye length enters here as an estimate of the largest possible
impact parameter before the incident particle will no longer feel the charge of the
target particle due to screening. As the deflection angle decreases with an increasing
impact parameter, the Coulomb logarithm provides a measure of the impact of
small angle collisions compared to large angle collisions. Although Λ depends on the
temperature and density, the logarithm is rather insensitive to the plasma parameters,
and the Coulomb logarithm usually remains in the range 10-20 for a very wide range
of plasma parameters [4].

The temperature scaling of the conductivity plays an important role during a
disruption, as it means that a drop in temperature is accompanied by a drop in the
conductivity. The conductivity after the temperature drop has a major impact on
the current dissipation rate. The current dissipation rate has in turn a significant
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impact on the electromagnetic forces exerted on the machine, as described later
in section 3.2. In addition, as the current in an inductive system can not change
instantly, a fast drop in the conductivity has to be compensated by a large induced
electric field. This is quite similar to the high voltages that may occur when one
disconnects the power supply to an ordinary coil, as the reader might be familiar
with from circuit theory. The electric field thus generated can quickly accelerate the
light electrons in the plasma to extremely high energies, forming a beam of so-called
runaway electrons, as described next.

2.3.3 The runaway phenomenon
We now turn our attention to the drag force felt by a single electron traveling with
velocity v through a plasma consisting of both electrons and ions. For v � vth, the
relative velocity, and hence the collision frequency, as seen by the particle traveling
through the plasma is dominated by the thermal motion of the plasma particles.
In such a case, we expect a linear dependence of the drag force on v, similarly to
the case with the shifted velocity distribution discussed in section 2.3.2. On the
other hand, for v � vth, the relative velocity is dominated by the velocity v, so that
ν ∝ 1/v3. As the drag force scales as Fdrag ∼ mvν, we now expect a 1/v2-scaling
of the drag force. A more complete analysis, outlined in section 2.4.1.1, confirms
these asymptotic scalings. More precisely, it can be shown that the dependence of
the drag force on the velocity for a non-relativistic electron is proportional to the
Chandrasekhar function,

G(x) = erf(x)− xerf ′(x)
2x2 , (2.15)

where erf is the error function and x = v/vth [10]. This function is illustrated in
figure 2.5.

It is instructive here to emphasise the contrast between the drag force in a plasma
and the drag force in an ordinary fluid. In an ordinary fluid, the drag force increases
monotonically with the velocity, typically linearly or quadratically. In such a case, if
an accelerating force, such as gravity, is present, an object moving through the fluid
will accelerate until the drag force equals the accelerating force. At this point, the
acceleration will stop, at a finite velocity. This is also the case in a plasma at low
velocities. At high velocities, however, the drag force decreases as a function of the
velocity. This means that, in the presence of an accelerating electric field E, once a
particle has gained a speed higher than a critical speed marked as vc in figure 2.5,
the drag force will never balance out the accelerating force. The particle can then
continue accelerating to extremely high energies. This phenomenon is called the
runaway phenomenon, and electrons with a speed larger than vc are called runaway
electrons [10]. For such electrons, the energy gain is only limited by the energy losses
due to synchrotron radiation and bremsstrahlung, which become significant at very
high energies [27, 28].

If the electric field becomes large enough, the accelerating force corresponding
to the electric field will be stronger than the maximum friction force. When this
happens, all electrons become runaways. An estimate of the electric field required
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Figure 2.5: Illustration of the drag force felt by an electron moving through a
plasma as a function of velocity. The presence of an accelerating electric field E
creates a runaway region at velocities larger than vc, where the drag force becomes
weaker than the accelerating electric force. The Dreicer field ED and the critical
electric field Ec are also marked.

for this to happen can be obtained by inserting v = vth in the asymptotic expression
for the drag force at high velocities. The electric field ED corresponding to this force
is called the Dreicer electric field and is given by

ED = e3n ln Λ
4πε20T

. (2.16)

When considering the full expression for the drag force, it can be shown that the
electric field at which all electrons become runaways is approximately equal to 0.21ED
[10].

As the electron speed is limited by the speed of light, one may anticipate from
the classical treatment that the drag force does not go all the way down to zero at
high velocities. This sets a lower limit on the electric field necessary for the existence
of runaway electrons. A relativistic treatment in the high energy limit shows that,
in a fully ionized plasma, the drag force approaches the force corresponding to a
critical electric field equal to [10],

Ec = e3n ln Λ
4πε20mc2 . (2.17)

During normal tokamak operation, due to the very high conductivity, an electric
field of the order of 1 mV/m is sufficient to drive the plasma current, which is usually
not high enough to enable runaway generation. The situation might however be
different in the case of a disruption, where the plasma suddenly cools [26]. Typically,
the temperature drops by about three orders of magnitude, resulting in a decrease in
the conductivity by a factor of the order of 10−4− 10−5 (recall the σ ∼ T−3/2 scaling
from section 2.3.2). On the short time scale of the temperature drop, the current
density is essentially constant, so that E ∼ 1/σ. The electric field thus increases by
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a factor of 104 − 105, and can become much larger than Ec, so that runaways are
generated.

Once a runaway current is formed, the low collisionality at high energies allows
the runaway current to remain in the plasma for a comparatively long time, even
after the electric field has decayed. Therefore, it is likely that a significant part
of the runaway current will crash into the wall before it is dissipated, potentially
causing severe damage to the device [5]. The details of the mechanisms for runaway
generation during tokamak disruptions, other potential damage associated with
these events, and possible mitigation techniques, are described in the next chapter.
However, before narrowing down to the details of disruptions, we conclude this
chapter with a section giving an overview of the theoretical framework for plasma
modeling. This framework lays the foundation for the model used in this work, which
is described in chapter 4.

2.4 Theoretical models of plasmas
The most exact way to model a plasma would be to solve the equations of motion
for every particle in the plasma individually. This approach is however unfeasible
due to the large number of particles involved (∼ 1023 in an ITER-like plasma). The
complexity must therefore be reduced to a statistical description, where only the
distribution of particles, and not every particle individually, is modelled. This can be
done with various levels of sophistication, depending on how many dimensions of the
distribution are modelled in detail, and how many are only included through moments
of the distribution over that degree of freedom. Two distinct classes of models are
kinetic models, where both the velocity and configuration space distributions are
resolved, and fluid models, resolving only the configuration space dynamics. These
descriptions are outlined in this section, together with the equations describing the
electromagnetic fields that are also a crucial part of plasma modeling.

2.4.1 Kinetic models
In a kinetic model, a particle species in a plasma is described by the distribution
f(r,v, t) [4]. As r and v both depend on three variables each, the distribution
function is a function of 7 variables. It is customary to normalise the distribution
function so that its integral over the velocity space gives the particle density,

n(r, t) =
∫
f(r,v, t)dv. (2.18)

With this normalisation, the number of particles in the infinitesimal phase space
volume dxdydzdvxdvydvz located at r = (x, y, z) and v = (vx, vy, vz) at time t is
given by

dn = f(x, y, z, vx, vy, vz, t)dxdydzdvxdvydvz. (2.19)
The evolution of the distribution function is governed by the equation referred to as
the Boltzmann equation or kinetic equation, which has the form [4]

∂f

∂t
+ v · ∇f + F

m
· ∂f
∂v

=
(
∂f

∂t

)
c

+ S. (2.20)
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Here, ∇ is the gradient in position space, ∂/∂v is the gradient in velocity space, and F
is the force acting on the particles, usually the electromagnetic force F = q(E+v×B).
The right hand side contains the effect on the distribution function caused by collisions
via the so-called collision operator

(
∂f
∂t

)
c
. The source term S represents changes in

the total number of particles, for example caused by ionization or recombination
(where a free electron is caught by an ion). The left hand side may be recognised as
the the total time derivative df/dt of the distribution function, i.e. the time derivative
in a frame of reference following the particles in the six-dimensional phase space, by
invoking the chain rule, and recognising that dv/dt = F/m from Newton’s second
law. The kinetic equation can therefore be regarded as a mathematical formulation
of the rather intuitive statement that the distribution function in the particle frame
can only change due to collisions and sources. The collision operator is usually rather
complicated, and additional details of the form used in this work will be described
in chapter 4.

In principle, a complete kinetic description of a plasma would include one dis-
tribution function for every species present in the plasma, coupled by their self
consistent electromagnetic field and collisional processes. However, despite the very
large reduction in complexity compared to following every particle individually, a
complete six-dimensional model of a plasma is usually also unfeasible. In this work,
we will therefore model the ions, and some aspects of the electron dynamics, by
the use of fluid models. Such models are described in section 2.4.2. Before this, we
conclude the overview of the kinetic description by introducing the fundamental
aspects of the collision operator for Coulomb collisions relevant for the kinetic part
of the model used in this work.

2.4.1.1 The Coulomb collision operator

When deriving an expression for the collision operator for Coulomb collisions, one
may exploit the fact that the dynamics is dominated by small angle collisions, as
discussed in section 2.3.2. This makes it possible to describe the dynamics using a
Fokker-Planck collision operator, which has the form [10](

∂f

∂t

)
c

= C(f) =
∑
k

∑
l

∂

∂vk

[
−〈∆vk〉∆t f + ∂

∂vl

(
〈∆vk∆vl〉

2∆t f

)]
. (2.21)

The first term can be interpreted as a friction force, and the second term describes a
diffusion process in velocity space. The expression 〈∆vk〉 should be understood as
the expectation value of the velocity change along direction k ∈ (x, y, z) during a
short time ∆t along a particle trajectory, due to the collisional contribution from
all other particles. These expectation values can be calculated based on a detailed
calculation of the velocity change in the single particle collision considered in section
2.3.1, assuming small deflection angles. Next, the number of collisions with a given
velocity and impact parameter of the incident particles is calculated, in terms of the
distribution function of the incident species. Once these quantities are known, the
expectation value for the total velocity change can be obtained by integrating their
product over velocity space and impact parameters. The resulting contribution to
the velocity change of species a due to collisions with species b, for a non-relativistic
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plasma, can be shown to be [10]

〈∆vk〉ab
∆t = −L

ab

4π

(
1 + ma

mb

) ∫ uk
u3 fb(v

′)d3v′, (2.22)

and
〈∆vk∆vl〉ab

∆t = −L
ab

4π

∫
Uklfb(v′)d3v′. (2.23)

Here, Lab = (qaqb)2/(maε0)2 ln Λ, u = v − v′ is the relative velocity between the
particles of species a and b, u = |u| and Ukl = (u2δkl − ukul)/u3 where δkl is the
Kronecker delta. If there are multiple species b1, b2, ..., bn colliding with species a,
the total collision operator for species a is given by the sum

Ca(fa) =
n∑
k=1

Cabk
(fbk

). (2.24)

The notation Cabk
should be interpreted as the collision operator for collisions of

species a against species bk, and fa, fbk
are the distribution functions for species a

and bk, respectively.
In many cases, equation (2.22) and (2.23) can be simplified by certain assumptions

for the distribution function of the background species. One such case is collisions
between particles of disparate speeds, e.g. collisions between electrons (denoted e)
and ions (denoted i) with similar temperatures. The large mass ratio makes the ions
move much slower, and the distribution function fi can therefore be approximated
by a delta function around v′ = 0. The resulting collision operator for electron-ion
collisions takes the form [10]

Cei = νei(v)L(fe), (2.25)

where the electron-ion collision frequency is νei(v) = niZeffe
4/(4πm2

eε
2
0v

3) and L(fe)
is the Lorentz operator. This operator is proportional to the angular part of the
Laplacian operator in velocity space, meaning that Cei describes a diffusion process
on a sphere in velocity space at constant speed. As a result, only the direction of
the electrons are changed by collisions with the massive ions.

The above approximation based on the disparate speeds of the colliding particles
is not valid for electron-electron collisions. However, in many cases, such as the ones
considered in this thesis, the electron distribution is dominated by a Maxwellian bulk
population, which can be used to simplify the collision operator. Thus, we divide the
electron distribution function into a Maxwellian part fe0 and a non-Maxwellian part
fe1 = fe − fe0 containing far fewer particles than fe0. The collision operator can be
shown to be bilinear [10], so that the collision operator can be expanded as

Cee(fe0 + fe1, fe0 + fe1) = Cee(fe0, fe0) + Cee(fe0, fe1) + Cee(fe1, fe0) + Cee(fe1, fe1).
(2.26)

The first term vanishes, as the collision operator for collisions between two Maxwellians
with the same temperature and average velocity is zero [10]. If fe1 is small compared
to fe0, the last term can also be neglected. The two remaining terms now comprise
a linearised electron-electron collision operator. The first of these remaining terms,

20



2. Review of the underlying plasma physics

called the field particle term, describes the effect on the Maxwellian bulk from
collisions with the small non-Maxwellian population. The second, called the test
particle term, describes the effect on the non-Maxwellian population from collisions
with the Maxwellian. This term can be evaluated by inserting the expression for
the Maxwellian population into equation (2.22) and (2.23). The resulting collision
operator becomes [10]

Cee(fe1, fe0) = νeeD L(fe1) + 1
v2

∂

∂v

[
v3
(

1
2ν

ee
s fe1 + 1

2ν
ee
|| v

∂fe1
∂v

)]
. (2.27)

Here, the terms describe angular scattering, frictional drag, and a parallel velocity
space diffusion, respectively. The corresponding collision frequencies are

νeeD = ν̂ee
erf(x)−G(x)

x3 , (2.28)

νeeS = 4ν̂ee
G(x)
x

, (2.29)

νee|| = 2ν̂ee
G(x)
x3 , (2.30)

ν̂ee = nee
4 ln Λ

4πε20m2
ev

3
th
. (2.31)

We may note here that the average friction force on a particle, −mevν
ee
S , is propor-

tional to the Chandrasekhar function (which was illustrated in figure 2.5). This fact
gives rise to the runaway phenomenon, as discussed in section 2.3.3.

To obtain a model suitable for the description of the relativistic particles consid-
ered in this work, some further extensions of the collision operator must be made.
To study the runaway acceleration of particles up to momenta larger than mec,
relativistic effects have to be included. The effects for partially ionized ions and
atoms present during a mitigated disruption must also be taken into account. Many
of these effects can be cast as extensions to the form of the collision frequencies
appearing in equation (2.27). The partially ionized ions and atoms do however
not only affect the dynamics of the non-Maxwellian population, but also introduce
radiative losses of thermal energy affecting the Maxwellian population. When using
a linearised test particle collision operator, as in this work, the dynamics of the
Maxwellian population is not accounted for by the kinetic equation. Instead, the
Maxwellian population can be described using fluid models, which are introduced
next.

2.4.2 Fluid models
In a fluid model, the configuration space dynamics is fully resolved, but the velocity
space dynamics are only taken into account through moments of the velocity dis-
tribution. In general, the moments can be thought of as integrals or averages over
the velocity space of various velocity-related quantities, and the ith order moment is
proportional to the average of vi. The zeroth order moment is simply the density
(one for each species present in the plasma),

n =
∫
fdv. (2.32)
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The first order moment is the fluid velocity u given by

u = 1
n

∫
vfdv, (2.33)

which is related to the species’ current density according to j = neu. The second
order moment is the energy density W given by

W = 1
n

∫ 1
2mv

2fdv, (2.34)

which is related to the species’ temperature according to W = 3nT/2. In principle,
one could continue expanding the fluid model by taking into account arbitrarily high
order moments, but in this work we will restrict ourselves to those above.

The equation governing the evolution of these quantities can be derived by taking
the corresponding moment of the kinetic equation. For the density, this yields a
continuity equation,

∂n

∂t
+∇ · (nu) = S. (2.35)

The source term S should now be interpreted as the velocity space integral of the
source term in the kinetic equation. In this work, we will however only consider
particles following the magnetic field lines in a cylindrically symmetric magnetic
field, and therefore the transport term ∇ · (nu) will be neglected. The density
evolution of various species is instead governed by the source term, taking into
account ionization/recombination processes and external sources. It is also possible
to treat sub-domains of the velocity space as fluids, in which case the velocity space
volume integrated over when calculating the moments is limited to these sub-domains.
This can for example be done for the runaway electrons, which have reached high
energies and move at near the speed of light. In such a case, acceleration across the
boundary into this region of velocity space gives rise to a density source term. The
details of the source terms used in this work will be described in later chapters.

Considering only the current density parallel to the magnetic field, and assuming
a quasi-steady state (i.e. neglecting explicit time derivatives), the current density is
simply equal to the sum of the Ohmic current density johm = σE and the runaway
current density jRE. In a fluid model, the latter can be taken into account by
assuming all runaways travel with the speed of light, so that jRE = nREec, where
nRE is the runaway electron density.

The part of the equation governing the electron energy density relevant for this
work has the form

∂W

∂t
= ∇ · (D · ∇W ) + Pohm + Pion + Prad. (2.36)

The ion energy density will be neglected for simplicity, which affects the heat capacity
at most by a factor of two. The first, diffusive, term on the right hand side represents
a cross-field transport of the thermal energy due to perturbations in the magnetic
field. The second term on the right hand side is the Ohmic (resistive) heating,
Pohm = jE. The third term describes the energy lost in order to overcome the
electron-ion binding energy during ionization. Finally, the fourth term describes
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radiative losses, generated by line radiation, recombination radiation due to partially
ionized ions and atoms present in the plasma, and by bremsstrahlung. The line
radiation comes from excitation-deexcitation processes that give rise to the emission
line spectrum of the ions and atoms. Recombination radiation comes from the net
energy loss (total loss minus the change in potential energy, which is not lost from the
thermal energy content) due to the similar process where a free electron is captured
by an ion and relaxed to the ground state.

2.4.3 Electromagnetic fields
The final component needed for a complete plasma model, when using either kinetic
or fluid descriptions of the plasma, is a description of the evolution of the electric
and magnetic fields. Such a description is given by Maxwell’s equations,

∇ · E = ρ

ε0
, (2.37)

∇ ·B = 0, (2.38)

∇× E = −∂B
∂t
, (2.39)

∇×B = µ0

(
j + ε0

∂E
∂t

)
, (2.40)

where ρ denotes charge density. These equations can be used to derive a single
equation relating the electric field and the current density. To do this, we make use
of the fact that the time variations of interest are slow compared to the typical time
scales of electromagnetic waves, so that the displacement current (the second term
on the right hand side in the last equation) is negligible. We then take the curl of
the third equation and insert the curl of the magnetic field from the fourth equation,
yielding

∇× (∇× E) = −µ0
∂j
∂t
. (2.41)

The quasi-neutrality condition gives ρ = 0, so that ∇ · E = 0. We can then use the
identity ∇2E = ∇(∇ · E)−∇×∇× E to rewrite the above equation as

∇2E = µ0
∂j
∂t
. (2.42)

This equation indicates the close connection not only between the electric field and
the current density, but also between the electric field and the time derivative of
the current density. It also contains the earlier mentioned property that the current
density cannot change arbitrarily fast (as equation (2.42) puts a constraint on its
time derivative). A fast drop in conductivity must therefore be accompanied by
an increase in the electric field. These properties are of great importance for the
plasma evolution during tokamak disruptions, which is described in detail in the
next chapter.
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3
Tokamak Disruptions

With the theoretical background from the previous chapter covered, we are now ready
to move on to a more detailed description of the main topic of this work, namely
disruptions. These events are a type of operational failure in a tokamak, where the
plasma suddenly cools. While disruptions present a range of concern already in
present-day tokamaks, the larger amount of energy (in the GJ range) released in
a reactor scale tokamak disruption make these events the potentially most severe
threat to the future of fusion energy based on the tokamak design [26]. A particular
concern is the subsequent runaway electron generation, especially due to the so-called
runaway avalanche mechanism which exponentiates the number of energetic electrons.
This process is exponentially sensitive to the initial current, making it a serious
threat to future high-current devices. This chapter starts with a description of the
general features of a tokamak disruption, runaway electron mechanisms at play, and
potential damage to the device, with an emphasis on the requirements for disruption
mitigation in ITER. We give a brief overview of the considered mitigation strategies,
and then focus on pellet injection, which is the currently favoured approach and so
studied in this work.

3.1 General features

Disruptions are caused by the plasma confinement being subject to a perturbation.
These events are closely related to the onset of magnetohydrodynamic (MHD) in-
stabilities [29]. An important quantity in this context is the safety factor, denoted
q, defined as the ratio of the number of times a field line revolves in the toroidal
direction for every revolution in the poloidal direction. On flux surfaces where q is
irrational, the field line never connects to itself, and then a single field line traces out
the whole flux surface. This can be used to illustrate the magnetic field geometry
with Poincaré-plots, some examples of which are shown in figure 3.1. These plots
are obtained by following a magnetic field line and adding a point to the plot every
time the field line crosses a given poloidal plane. The resulting illustration of an
unperturbed plasma equilibrium is shown in the left panel.

The instabilities are related to perturbations of the plasma on flux surfaces where
q is a low-order rational number, referred to as rational flux surfaces [29]. On these
flux surfaces, the field lines connect with themselves after a few toroidal revolutions,
making these surfaces more susceptible to perturbations. The instabilities are often
induced by reaching a critical magnidute of a pressure gradient or current density,
leading to a growing perturbation of the magnetic field. This can be caused by
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Figure 3.1: Poincaré-plots illustrating the stochastisation of a magnetic field in
connection to a disruption, (left) unperturbed magnetic field, (middle) creation of
magnetic islands at the flux surface where q = 3/2, and (right) stochastisation of
the magnetic field due to overlapping of islands centered at different rational flux
surfaces. Figure adapted from ref. [30].

e.g an influx of impurities into the plasma. The impurities might originate from
an unintended influx of particles from the wall, or from a deliberate injection of
impurities attempting to control the energy loss in order to minimize the damage to
the device [5, 31]. The latter scenario is the focus of this work, and is introduced in
section 3.4.

Perturbations to the magnetic field tend to create island-like magnetic field
structures in the vicinity of the rational flux surfaces, centered around the points
originally passed by the perturbed field lines. Such structures are illustrated in the
middle panel of figure 3.1 for the case with q = 3/2. As such islands are formed and
grow on different rational flux surfaces, they might become large enough to overlap
with each other. At this point, the magnetic field lines reconnect with each other
in a rather chaotic way, causing a stochastisation of the magnetic field [29]. When
this happens, the field lines are no longer limited to single flux surfaces, but instead
ergodically fill volumes, as illustrated in the right panel of figure 3.1.

As the particles follow the ergodic magnetic field lines across the equilibrium flux
surfaces, the particle transport and thermal conductivity across the plasma is greatly
increased [26, 31]. If the instability was triggered by an influx of impurities, the
impurities also contribute directly to the thermal energy loss by emitting radiation.
A major part of the impurity radiation is emitted in the form of line radiation as
partially ionized species fall back to lower energy levels after collisional excitation by
the surrounding electrons. Another contribution comes from the radiative release of
the potential energy change when a free electron recombines with an ion. Moreover,
the introduction of high-Z material increases the bremsstrahlung corresponding to
the momentum exchange during collisions between charged particles, which might
contribute significantly to the thermal energy losses at the high initial temperatures.
These mechanisms cause a rapid cooling of the plasma from several keV down to
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∼ 10 eV over a millisecond time scale. This phase of the disruption is called the
thermal quench.

As the speed at which particles follow the perturbed field lines is, on average, of
the order of the thermal speed, the cross-field transport due to magnetic perturbations
decreases with decreasing temperature. In addition, the flux surfaces start to re-heal
towards the end of the thermal quench, and the transported losses are therefore
greatly reduced after the thermal quench [31]. At this point, the energy balance,
and hence the temperature, is essentially determined by impurity radiation and the
Ohmic heating by the plasma current.

The cooling leads to a rapid drop in the plasma conductivity, due to the con-
ductivity scaling as T 3/2, as shown in section 2.3.2. The thermal quench is usually
very fast compared to the current diffusion time scale, which is set by the plasma
conductivity and the scale and mechanical structure of the device. The current can
therefore not change significantly during the thermal quench, so a large electric field
must be induced in order to maintain the current. After this, the electric field as
well as the current starts to decay by diffusing out of the plasma, a phase called
the current quench [26]. An example of such an evolution during a simulated ITER
disruption is shown in figure 3.2 (data adapted from ref. [19]), where the panels show
the evolution of the average temperature and electric field (left), and current (right).
The thermal quench and current quench are marked by a red and green shaded area,
respectively.

The electric field induced during a disruption is usually well above the critical
electric field for runaway electron generation, leading to the conversion of part of the
original plasma current into a current carried by runaway electrons [26]. Eventually,
the Ohmic current will decay and the runaway current becomes the only current
remaining in the plasma. Due to the low collisionality of runaway electrons, this
current decays much more slowly than the Ohmic current, forming a runaway plateau.
This is clearly seen in the blue shaded area of the right panel of figure 3.2. The slow
dissipation of the runaway current usually continues until the position control of the
plasma is lost and the plasma impacts the wall.

3.2 Vessel loads and mitigation requirements
The various phases of a disruption all pose their own threats to the device, imposing
different requirements on a successful mitigation system. We here give a brief overview
of the potentially harmful mechanisms at play, and the corresponding requirements
for successful disruption mitigation in an ITER-sized tokamak, specified in ref. [5].

The sudden deposition of the released thermal energy content during the thermal
quench might cause melting of the plasma facing components if the heat loads are
localised. It is therefore necessary for the disruption mitigation system to ensure
that a major part of the thermal energy is radiated homogeneously. In ITER, the
homogeneously radiated fraction should be larger than 90% of the initial thermal
energy content. The time frame between the detection of an emerging disruption
and the onset of a naturally occurring MHD-induced thermal quench is expected
to be about 20 ms, which sets the required reaction time scale for the disruption
mitigation system. Note, however, that any perturbations of the plasma caused
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Figure 3.2: Illustration of the general features of a disruption, based on a disruption
simulation in an ITER-like plasma (corresponding to Case 1 in ref. [19]). The panels
show (left) the average temperature drop and resulting increase and decay of the
average electric field, and (right) the current decay. The shaded areas indicate the
time spans of the thermal quench (red), current quench (green), and runaway plateau
(blue), respectively.

by the mitigation systems can accelerate the growth of MHD instabilities and/or
aggravate the runaway electron issue, and the external interventions must therefore
be implemented with care.

During the following current quench, the decay of the plasma current and motion
of the plasma induces currents in the surrounding structures. The interaction between
these currents and the toroidal and poloidal magnetic field gives rise to potentially
harmful forces on these structures. As the position control of the plasma is lost and
the plasma moves towards the wall, part of the plasma current might flow through
the surrounding structures. This part of the plasma current forms a so-called halo
current, which can also contribute to the vessel loads. The induced currents increase
with shorter current quench times, while the risk of substantial halo currents increase
with longer current quench times, giving both an upper and lower limit on the
acceptable current quench time. In ITER, the current quench time should preferably
be longer than 50 ms, with a hard limit at 35 ms, and shorter than 150 ms.

Finally, if a runaway current is formed, a major part of the runaway current can
impact the wall when the plasma control is fully lost. This would cause a substantial
localised melting, and possibly also damage deeper into the underlying structures.
In ITER, the runaway current remaining in the plasma upon wall impact should
therefore not exceed 2 MA.

3.3 Runaway electrons
In order for a runaway current to form, there must be a mechanism feeding electrons
to the velocity space region above the critical velocity for runaway acceleration,
which was introduced in section 2.3.3. Depending on the circumstances, a number of
such mechanisms may be present in tokamak disruptions, and these are reviewed in
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this section.
The runaway generation mechanisms can be divided into two different types:

primary generation or seed generation, that is independent of the number of previ-
ously present runaway electrons, and secondary generation or avalanche generation,
which amplifies an existing runaway seed. An example of the former is the Dreicer
mechanism [12]. This mechanism relies upon the fact that the velocity distribution
tends to equilibrate collisionally towards a Maxwellian, with a high energy tail above
the critical velocity. When this part of the distribution becomes runaways and
accelerate to higher energies, the electron bulk will re-equilibrate and “fill out” the
depleted tail, resulting in a continuous runaway generation. This can be a major
runaway generating mechanism in present day machines [32–34], but is expected
to be very small in ITER according to recent simulations, in most cases negligible
compared to other mechanisms [16, 19, 35].

The hot-tail mechanism of runaway generation occurs because it takes a finite
time for the tail of the initially hot Maxwellian velocity distribution to equilibrate
to the much lower temperature rapidly obtained by the bulk electrons during the
thermal quench [15]. The equilibration of the tail of the distribution is slower than
that of the bulk due to the velocity dependence of the collision frequency derived
in section 2.3.1. The tail of the distribution might therefore temporarily form a
non-Maxwellian electron population at superthermal energies. When the electric field
increases at the start of the current quench, a part of this superthermal population
may remain at velocities larger than the critical velocity, and in that way become
runaways before they have time to thermalise. This mechanism is illustrated in
figure 3.3, showing the evolution of the angle-integrated distribution function during
a disruption as simulated by the numerical tool described in chapter 4. As opposed
to other mechanisms, the hot-tail generation is only present during the initial part
of the disruption. The relative importance of this effect is strongly dependent on
the details of the temperature drop, primarily the time scale, and can therefore vary
over several orders of magnitude depending on the circumstances [36].

In non-nuclear experiments, using pure deuterium plasmas, the Dreicer and
hot-tail machanisms are the only primary runaway generation mechanisms. During
nuclear operation, however, the power will be generated by fusing deuterium and
tritium, with the latter being β−-radioactive. Part of the energy spectrum of the
electron released during the β−-decay may fall within the runaway region, providing
another source of runaway generation [16, 35]. If the post-disruption density is not
too large, this mechanism is expected to generate a seed of the order of 1 A in
ITER [16, 19]. Despite being seemingly very small, it is calculated to be enough
to obtain a final runaway current in the order of several MA due to the avalanche
mechanism described below. The runaway generation from tritium decay can however
be suppressed by increasing the post-disruption density enough to make the critical
energy for runaway generation exceed the energy released during the β−-decay.

Another runaway generation mechanism present during nuclear operation comes
from the activation of the wall due to the bombardment of neutrons released in
the fusion reactions. This bombardment makes the wall radioactive, causing it
to emit γ-photons. These γ-photons can be Compton scattered against electrons
in the plasma, transferring enough energy to an electron to accelerate it over the
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Figure 3.3: Illustration of the hot-tail mechanism, showing a representative evo-
lution of the angle averaged electron momentum distribution 〈f(p̄)〉 as a function
of the normalised momentum p̄ = p/(mec). The vertical dashed lines indicate the
runaway threshold momentum (initially outside the scale). The tail of the initially
hot Maxwellian distribution (black line) takes a finite time to equilibrate to the
dropping temperature of the bulk electrons. As the electric field increases, part of the
distribution is therefore “caught” above the runaway threshold momentum, and is
accelerated to higher momenta. The data is extracted from the disruption simulation
studied later in figure 5.6 a).

runaway threshold [16]. Due to the large energy of the γ-photons, it is practically
impossible to increase the density enough to suppress this mechanism, as opposed
to the runaway generation due to tritium decay. Moreover, the number of target
electrons for Compton scattering increases when the density increases, and hence
also the runaway generation rate. Therefore, this mechanism will produce a seed of
the order of 0.1-1 A rather independently of the plasma parameters [16, 19].

Finally, the runaway generation by the above mechanisms may be amplified by
the avalanche mechanism. This mechanism generates runaways through collisions
of existing runaways with slower electrons in a way that both electrons have final
velocities larger than the critical one after the collision [17, 18, 37]. As the energies
of the runaway electrons are much higher than the ionization energy of the ions in
the plasma, bound electrons may also contribute to the avalanche process. In fact, it
has recently been shown that an increase of the fraction of bound electrons might
substantially enhance the avalanche. The reason for this is that the bound electrons
contribute to the number of target electrons to practically the same extent as the
free electrons, while their contribution to the drag force is smaller than that from
free electrons at high electric fields [20].

The avalanche mechanism gives an initially exponential growth of runaway
electrons, and is expected to be responsible for the vast majority of the runaway
generation in ITER [16, 19]. It has been shown that in circumstances favourable for
runaway generation, only a few seed runaway electrons might be enough to generate a
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final runaway current of several MA [19]. The exponential growth continues until the
runaway current becomes comparable to the total current remaining in the plasma.
At this point, the growth of the runaway current significantly reduces the decay rate
of the total current, which in turn reduces the induced electric field, as seen near
t = 13 ms in figure 3.2, and in that way terminates the runaway generation [20].

3.4 Disruption mitigation strategies
We now move on to the main methods considered in order to achieve the disruption
mitigation requirements covered in section 3.2. This is a very active field of research,
to which this work aims to contribute. The strategies studied most extensively to
date are based on various forms of material injection, and so-called shattered pellet
injection has been chosen as the basis for the disruption mitigation system in ITER [8,
21]. This section gives an overview of material injection in the context of disruption
mitigation, leading up to the recently suggested two-stage shattered pellet injection
scheme that is the focus of this work.

3.4.1 Massive material injection
Massive material injections act to mitigate disruptions in three main ways, corre-
sponding to the requirements on the radiated fraction of the thermal energy, current
quench time and runaway avoidance. Suitable materials for radiative dissipation of
the thermal energy are noble gases such as neon or argon [5]. Also note that as long
as some amount of the impurity is present, the radiation can be further enhanced by
increasing the electron density by injecting e.g. hydrogen species, since the collisional
excitation rate is proportional to the electron density.

The quantity and composition of injected material can also be used to regulate
the post-disruption temperature. As mentioned in section 3.1, this temperature is
roughly given by an equilibrium between the impurity radiation and the Ohmic
heating. Since the current quench time is proportional to the conductivity, which in
turn scales as T 3/2, the temperature essentially determines the current quench time.
A suitable temperature to give an acceptable current quench time in ITER lies in
the 5-10 eV range [20].

Finally, the injected material might reduce the runaway generation due to the
resulting electron density increase, leading to an increase in the critical electric field
according to equation (2.17). The usefulness of this method to reduce the runaway
generation has however recently been questioned [19], for reasons detailed below in
section 3.4.2.1.

With the above general background about the purpose of massive material
injection in mind, we now turn to the different methods proposed to deliver the
injected material in the following three subsections.

3.4.1.1 Gas injection

The most straightforward injection method is massive gas injection, where the
injected material is simply released in gaseous form from a pressurised vault [5]. As
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the simplest proposed method to implement, it is the one most studied experimentally,
and therefore also theoretically. The greatest advantage with this method is its
simplicity, while the assimilation efficiency of the released gas is found to be rather
poor in practice on larger machines, despite promising results on smaller machines
[38, 39]. Much of the material has been observed in both experiments and simulations
to be stopped at the plasma edge and only slowly mix with the rest of the plasma.
This can be understood as a result of the fact that as soon as the gas particles ionise
they become confined by the magnetic field, which together with the pressure of the
pre-existing plasma restricts the gas penetration. The resulting strong cooling at the
edge may induce substantial MHD activity, which may help to speed up the inward
transport of injected ions but also lead to an unwanted increase in the conducted
heat losses.

3.4.1.2 Pellet injection

Another method that gives a faster, more efficient delivery of material to the plasma
core, is to inject the material in the form of solid cryogenic pellets [5]. In this
way, the material travels through the plasma in a neutral, solid form, while being
continuously ablated by the hot background plasma, depositing material along the
trajectory. The pellets are typically accelerated by a propellant gas and reach speeds
of around 300-600 m/s. This is similar to many typical gas sound speeds, and
therefore the arrival time of the pellets at the plasma is not significantly different
compared to a gas injection from the same location. Note that injection of pellets
(though typically slightly smaller and of hydrogen isotopes) is regularly performed
on existing machines also for other purposes than disruption mitigation, such as to
fuel the plasma, regulate instabilities and for diagnostic purposes [40, 41].

3.4.1.3 Shattered pellet injection

There are, however, a number of disadvantages associated with disruption mitigation
by pellet injection. Depending on the speed at which the pellet travels and the state
of the plasma, the pellet may pass through the plasma without depositing all of
its material. Besides making the injection less effective, the remaining pellet might
damage the wall upon impact [5]. This problem is particularly relevant when a pellet
is injected after the plasma has already been cooled in the course of the thermal
quench. One way to address this issue is to use Shattered Pellet Injection (SPI) [42].
In an SPI, the pellet is shattered against a tilted plate before entering the plasma.
The number of shards into which the pellet is shattered may be controlled (to some
extent) by varying the speed and impact angle on the shattering plate. Increasing
the number of shards (for a fix total amount of pellet material) increases the ablation
rate, hence reducing the amount of material passing through the plasma without
ablating. The increased ablation may be understood by the fact that shattering
the pellet increases the total contact area with the plasma. Any leftover material
striking the wall will also be spread over a larger area, reducing the risk of damaging
the wall. The initial spread of the deposited material is also increased, lowering the
risk of local peaking in the radiative heat loads before the material has homogenised
through the plasma.
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Because of these advantages, shattered pellet injection has been chosen as the
basis of the ITER disruption mitigation system [8, 21]. The current design of the
ITER disruption mitigation system, described in ref. [21], includes 24 injectors
distributed over three toroidal locations. Each injector can inject cylindrical pellets
with a diameter of 28.5 mm and a height of 57 mm, consisting of deuterium and/or
neon, or a mixture thereof. Such pellets contain of the order of 1024 atoms, with
some dependence on their composition. The pellets will be accelerated either by a
pressurized gas or an electromagnetic driven punch system. For the lighter deuterium
pellets, speeds of up to 800 m/s are expected to be achievable, while the maximum
speed of the heavier neon pellets is expected to be about 200 m/s. However, the
design and operation parameters of the ITER disruption mitigation system, such
as the pellet composition, the number of pellets and their particle contents, the
degree of shattering, timing aspects etc. remain open questions. These questions
are currently being addressed by major simulation efforts [16, 19, 24], including this
work. The current state of research regarding these questions is the subject of section
3.4.2.

3.4.2 Injection schemes
A particular difficulty for the disruption mitigation system is that the various
requirements of the disruption mitigation are to some extent contradictory [5]. For
the mitigation of the thermal loads, it would be beneficial to have an early large
injection of strongly radiating material such as argon or neon. Such injections
could also substantially increase the electron density, which would contribute to the
reduction of the runaway generation. Large amounts of argon or neon might however
result in a post-thermal quench temperature too low to give an acceptable current
quench time. Moreover, they might also increase the runaway seed generation from
the hot-tail mechanism as well as enhance the subsequent runaway avalanche due to
the presence of bound electrons. This section gives an overview of the current state
of research regarding suggested compromises attempting to circumvent these issues.

3.4.2.1 Mixed deuterium-impurity injection

The currently envisaged compromise is to inject large amounts of deuterium combined
with a trace amount of argon or neon [21, 42]. The role of the deuterium would
be to provide a source of electrons in order to limit the runaway generation and
to enhance the radiation efficiency of the neon. The role of the neon would be to
radiatively dissipate the thermal energy and to set a post-thermal quench equilibrium
temperature within an acceptable range.

The density required to give a sufficient runaway reduction is however still under
investigation. The electron density required to make the critical electric field larger
than the maximum electric field expected to be induced during disruptions in the
nuclear operation phase of ITER is of the order of 1022 m−3 [5]. This density is about
two orders of magnitude larger than the typical density during normal operation.
On the other hand, it was found in ref. [16] that a density of 4 · 1021 m−3 is sufficient
to reduce the runaway generation to an acceptable level.
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Moreover, it was found in ref. [19] that the reduction might only be present for
a certain range of injected impurity and deuterium densities. When the injected
impurity and/or deuterium densities increase, the post-disruption temperature de-
creases, and if the post-disruption temperature becomes close to 1 eV, all species
present in the plasma, including the hydrogen isotopes, start to recombine. The
resulting increase in the fraction of bound electrons greatly enhances the runaway
avalanche, as mentioned in section 3.3. In addition, the runaway generation further
increases due to the increase in the electric field resulting from the lower temperature.
The trend of reducing runaway generation was therefore found in ref. [19] to turn
at deuterium densities of the order of 1021 m−3 for an ITER plasma in the nuclear
operation phase. The calculated minimum runaway current (within the range of
parameters that also gave an acceptable current quench time) was 3.7 MA. It was
however noted that these values are sensitive to details in the model of the radiation
losses that contain significant uncertainties, such as the opacity of the plasma to the
emitted line radiation, requiring further investigation.

3.4.2.2 Multiple-stage injection

A recently suggested improvement to the above scheme is to divide the injection
into two stages following rapidly after each other [24]. The first stage would then
deliver the deuterium, and the second deliver the neon or argon. The aim of such
a scheme would be to first cool the plasma by dilution down to the 100-1000 eV
range by the pure deuterium injection, without perturbing the plasma pressure or
current density enough to significantly accelerate the growth of MHD instabilities.
The plasma would then be left at this temperature for a few milliseconds to let the
full distribution equilibrate to a Maxwellian at this temperature. A final radiative
thermal quench would then be triggered by injecting the argon or neon content. The
intermediate equilibration of the distribution could potentially produce a significant
reduction of the hot-tail runaway generation. The radiated fraction of the thermal
energy could also be significantly increased, as the magnetic perturbations would
not become significant until the comparatively low temperature makes conducted
losses subdominant to radiation losses, as discussed in section 3.1. It was indicated
in ref. [24] that it is possible to cool an ITER-like plasma by dilution down to ∼ 100
eV without immediately triggering an MHD-induced thermal quench. The runaway
dynamics and radiation characteristics of such a two-stage SPI scheme have however
not been thoroughly studied before, so this scheme is the main focus of chapter 5 of
this work.

3.5 Pellet injection physics
In order to assess the performance of the injection schemes described in section 3.4.2,
an understanding of the underlying physics of pellet injection is essential. Before
going into the details of the disruption model used in this work, presented in chapter
4, we therefore conclude this chapter with an overview of the background theory
of pellet injection physics. The process is divided into two steps: the ablation of
the pellet (or pellet shards) by the hot background plasma, covered in section 3.5.1,
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and the subsequent homogenisation and equilibration over the flux surfaces of the
ablated material, covered in section 3.5.2.

3.5.1 Pellet ablation
In essence, the number of particles ablated from the pellet during a given time
interval is determined by the ratio of the heat flux reaching the pellet surface during
this time interval and the sublimation energy per particle. However, on a very fast
time scale after the pellet is exposed to the plasma (of only a few µs) the finite flow of
ablated material away from the pellet produces a dense cloud around the pellet that
shields it from the heat flux from the plasma [43]. The pellet ablation can therefore
be regarded as a self-regulatory process, balancing the heat flux from the plasma
and the resulting build-up of the shielding cloud. The resulting quasi-stationary
cloud size and ablation rate are such that only the ablation energy necessary for
maintaining the cloud size reaches the pellet surface.

Directly above the pellet surface, the cloud is neutral and close to spherically
symmetric. This neutral cloud typically has a thickness of the order of 1 cm, and
a particle density of 1025 − 1026 m−3. The pellet (or pellet shard) itself typically
has a thickness of the order of a few millimeters. At the edge of the neutral cloud,
the material density falls and the temperature increases enough to begin to ionize
the ablated material. The material takes the form of a confined cool plasma, whose
subsequent expansion is therefore mostly aligned with the field lines.

There are three main mechanisms involved in the shielding of the pellet due
to the neutral cloud, although usually with quite different importance [43]. With
decreasing importance, these mechanisms are referred to as gas dynamic shielding,
electrostatic shielding and diamagnetic shielding. The gas dynamic shielding refers
to the deposition of incident plasma energy by the collisional interaction with the
neutral gas in the closest proximity of the pellet. Collisions between the hot incident
electrons and the new cold ablated plasma beyond the neutral cloud also contribute
to some extent, but gives a typically much smaller contribution [44, 45]. The energy
deposition in the cloud occurs due to scattering, heat transfer to the cloud particles,
and ionization and excitation of ions and atoms in the cloud, which then dissipate
the energy by radiation [43, 46]. It has however been estimated that, due to its
relatively high density, the cloud might be substantially opaque to the resonant lines.
A significant fraction of the radiation might therefore be trapped within the cloud,
and the corresponding energy also contribute to the cloud heating [47, 48].

Electrostatic shielding results from the different mobility of ions and electrons
[43]. Electrons in the background plasma initially flow into the ablation cloud much
faster than the ions, due to their lower mass. This gives rise to a difference in charge
between the ablation cloud and the surrounding plasma, and the corresponding
electrostatic potential difference limits the heat flux into the ablation cloud.

Diamagnetic shielding occurs as there is a finite timescale for the magnetic field
diffusion into the cloud [43]. The gyration of the ionized particles in the ablation
cloud opposes the background magnetic field, hence the name diamagnetic shielding.
The heat flux from the background plasma is guided by the magnetic field lines,
so deflection of the magnetic field leads to a deflection of the heat flux around the
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ablation cloud. The importance of this effect can be characterised by the ratio of
the flow speed of material away from the pellet and the speed of the diffusion of the
magnetic field into the neutral cloud, which is not expected to be very large due to
the comparatively low conductivity of the neutral cloud [44].

In reality, some further complications compared to the picture described above
arise. One such complication is that as the pellet moves through the plasma,
it can periodically cross the boundary of the ablation cloud surrounding it and
establishes a new one upon the direct exposure to the background plasma [41].
This periodicity might explain the striations in the deposition profile sometimes
observed in experiments. Another complication is that the ablation is not completely
symmetric around the pellet parallel to the field lines [41, 43]. Reasons for this
includes the difference in the heat flux parallel and anti-parallel to the electric field.
This makes the ablation cloud thicker in the direction anti-parallel to the electric field.
Another source of cloud asymmetry is irregularities in the pellet shape. Asymmetric
ablation might give rise to a “rocket-like” effect, propelling the pellet in the opposite
direction to the increased ablation. In many theoretical models, however, these
subtleties are not accounted for.

3.5.2 Pellet material deposition
Once the material is ablated and ionized, it begins to homogenise over the flux
surfaces and the pressure and temperature start to equilibrate with the background
plasma. In present day machines the homogenisation process takes place over a time
scale of the order of 0.1-1 ms [40]. Apart from the increased density, the equilibrated
post-injection plasma has also been cooled by dilution of the initial thermal energy
and the energy consumed by sublimation and ionization.

There are two main processes responsible for the homogenisation. The first is the
excess pressure of the cold ablated plasma driving its expansion along the magnetic
field. As a field line covers a whole flux surface (except at rational flux surfaces), the
expansion along the field lines eventually leads to the material being homogenised
over the entire flux surface. This mechanism alone has however been shown to
give about an order of magnitude slower equilibration than the 0.1-1 ms time scale
observed in experiments [40].

An additional mechanism to consider in describing the homogenisation is caused by
the potential difference between the channel of ablated material and the background
plasma, again arising due to the much larger mobility of electrons compared to
ions. As the channel of ablated material is heated while still having a much larger
density than the background plasma, the net flow of negative charge will go from
the channel of ablated material into the background plasma. The gradient along the
tokamak minor radius of this potential gives rise to an electric field along the minor
radius, which in turn causes an E ×B-drift in the poloidal direction. Conservation
of momentum on the flux surface where the channel of ablated material resides
then gives rise to a poloidal rotation of the plasma in the direction opposite to the
poloidal E ×B-drift of the ablated material. The gradient of this rotation along the
minor radius, together with the variation of the background magnetic field direction,
gives rise to a poloidal stretching of the ablated material. As the ablated material
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is thinned out, the collisional interaction with the background plasma becomes
more effective, and eventually the ablated material equilibrates with the background
plasma. The above mechanisms together have been shown to give rather accurate
reproductions of the time evolution of the background plasma following fueling pellet
injections in experiments [40].

Finally, yet another E × B-related drift might be present that transports the
ablated material across the flux surfaces [49]. The limited length along the toroidal
field line of the initial expanding channel of ionised, ablated material, re-introduces
the issue of vertical charge separation in the channel by the grad B drift. Remember
this issue was described in section 2.2.2, occurring in the whole tokamak in the
absence of a poloidal magnetic field. This gives rise to a vertical electric field in
the vicinity of the ablated material, causing an E ×B drift of the ablated material
along the major radius towards the low field side. This effect results in a shift of the
final deposition profile compared to the deposition profile immediately following the
ablation.
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4
Disruption model

Having acquired a basic knowledge of the characteristic features of disruptions, and
the proposed SPI schemes to mitigate their impact, we are now in a position to
describe the model used in this work to simulate such scenarios. Following the SPI,
the pellet shards begin to ablate when they are exposed to the hot background
plasma. Once the pellet material is deposited, the plasma density increases and the
temperature drops. The cooling occurs partly due to the dilution of the thermal
energy, and partly due to energy losses through radiation as well as transport
stemming from the perturbation of the magnetic field, as detailed in section 3.1.

A number of components are required to build a model for the pellet material
deposition through the final current decay, and they are described in the sections
of this chapter. The model for the evolution of the pellet and the resulting density
increase is described in section 4.1, and the model describing the subsequent plasma
cooling is described in section 4.2. The cooling of the plasma is accompanied by
a drop in the conductivity, leading to the induction of a strong electric field, after
which the plasma current starts to decay. The strong electric field might however lead
to the generation of a substantial runaway current, as was also described in section
3.1, resulting in an incomplete current decay. The evolution of the electric field is
governed by the equations described in section 4.3, and the models governing the
runaway generation resulting from the induced electric field are described in section
4.4. Finally, the numerical tool DREAM [25], which solves the set of equations listed
in this chapter starting from a set of given SPI parameters and pre-disruption plasma
parameters, is described in section 4.5.

4.1 Shattered pellet injection

An SPI starts with a pellet being accelerated and then shattered against a tilted
plate, resulting in a plume of pellet shards of different sizes and velocities entering
the plasma. As the shards travel through the plasma, they provide a set of localised,
moving sources of particles. In the 1D model used in this work, assuming an
instantaneous homogenisation over the flux surfaces, such a particle source translates
to a source acting on the densities at the local flux surface. The strength of the
density sources are determined by the ablation rate of the shards, the size of the flux
surfaces, and a kernel function defining the radial spread of the deposited material
around the shards. The ablation rate must be calculated self-consistently with the
buildup of the ablation cloud, shielding the pellet from further ablation, as described
in section 3.5.1. This requires a model for the shielding of the heat flux from the
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ambient plasma in the ablation cloud.
Here, we employ the gas dynamic shielding description, introduced in section

3.5.1. Furthermore, the neutral ablation cloud directly above the pellet surface,
where most of the shielding takes place, is assumed to be spherically symmetric.
Thus, the problem is reduced to one dimension, with the radius from the center of
the pellet as the only coordinate. The energy is primarily deposited in the cloud
by the light electrons of the bulk plasma, which stream rapidly along the field lines
to intersect the pellet. The gas dynamic shielding model determines the reduction
of the incident electron heat flux on the way through the shielding cloud, in terms
of the density and energy distribution of the bulk plasma electrons. This requires
expressions for the electron energy reduction due to absorption and scattering in
the neutral cloud, for a given energy of the incident electron. The model moreover
imposes a boundary condition at the pellet surface, such that a quasi-stationary
ablation process is achieved, where the energy reaching the pellet surface is just
sufficient to provide the sublimation energy required to maintain the cloud. This
boundary condition is determined by the sublimation energy and flow properties at
the solid-gas interface.

Analytical solutions for the pellet ablation rate within the above setup have been
determined in the literature. The original treatment was given in ref. [44] for pure
hydrogen pellets. The energy distribution of the incident electrons from the bulk
plasma is typically approximately Maxwellian, which in ref. [44] was approximated
by a single mono-energetic beam with effective energy per particle Ein = 2TM, equal
to the ratio of the unidirectional heat and particle flux. Here, TM denotes the
temperature of the Maxwellian population. In our notation, the subscript M is
included to distinguish the Maxwellian part of the electron population from the
superthermal electron population that might form during a disruption, as described
in section 3.3. The model for the electron energy absorption and scattering consisted
of empirical expressions specific for hydrogen isotopes. Due to the small sublimation
energy for hydrogen, the boundary condition at the pellet surface was set by assuming
the heat flux and particle energy to be negligible there. The ablation rate thus
derived is called the Neutral Gas Shielding (NGS) model.

This model was later improved upon, by accounting for the full Maxwellian energy
distribution of the incident particles instead of a mono-energetic beam in ref. [48].
A treatment of pellets consisting of higher atomic numbers was made in ref. [50],
accounting for the Z-dependence of the electron energy absorption and scattering,
and the effect on the boundary conditions resulting from the higher sublimation
energy. The most up to date version of the NGS model, accounting for the full
Maxwellian electron momentum distribution with a heat flux reduction model valid
for pellets consisting of a mix of neon and deuterium was presented in ref. [51]. This
analytical model was recently benchmarked against a numerical time-dependent 3D
Lagrangian flow model in ref. [52], showing agreement within a few percent when
using similar geometrical approximations. Despite its simplicity, various versions of
the NGS model has been shown to produce simulated density profiles that agree with
experiments within a few tens of percent, for both fueling pellets [43] and massive
SPI injections [53]. Therefore, we adopt the NGS model of ref. [51] here, for these
first SPI disruption simulations with DREAM.
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The technical aspects needed to describe the SPI scenario are presented below in
more detail. These include the size and velocity distributions of the shattered pellet
shards (with parameters to be optimised), and the explicit form of the ablation rate.
Finally, the choices regarding the translation from a particle source to a density
source are discussed further.

4.1.1 Shattering
We assume the pellets to be shattered into Ns shards, which are approximated as
spherical, with sizes described by an equivalent radius rp,k, with k = 1, ..., Ns. The
shard radii are assumed to be drawn randomly from the distribution with probability
density

P (rp,k) = k2
prp,kK0(kprp,k), kp =

(
Ninj

6π2npNs

)−1/3

, (4.1)

where K0 is the zeroth modified Bessel function of the second kind, np is the number
density of the solid pellet material, and Ninj is the total number of injected atoms.
This form of the shard size distribution reflects the fact that the pellet is initially
mostly broken by shear stresses into a saucer-like structure [54]. If the further break-
up of the thin layers thus formed is approximated as a division into a large number
of rectangles, separated by randomly and independently distributed perpendicular
straight lines, the form of the shard size distribution given by equation (4.1) is
obtained [55]. This distribution of shard sizes has recently been used in several other
SPI studies [56–58].

∆α

x

y

(x0, y0)

〈vp〉 ±∆vp

Wall

Plasma edge

Shattering point

Figure 4.1: Illustration of an SPI injection, as modeled here, defining the geometry
and parameters used to describe the motion of the pellet shards.

Once shattered, the shards are assumed to travel with constant velocities vp,k in
a 2D-plane, starting at the shattering point (x0, y0), as illustrated in figure 4.1;

xp,k(t) = (xp,k(t), yp,k(t)) = (x0 − vp,k cosαp,kt, y0 + vp,k sinαp,kt), (4.2)
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with the origin of the (x, y)-coordinate system positioned at the plasma center. The
speeds vp,k and angles αp,k to the horizontal plane are chosen from uniform random
distributions within 〈vp〉 ±∆vp and ±∆αp, respectively. The parameters x0, y0, 〈vp〉,
∆vp and ±∆αp, as well as Ninj and Ns, are considered controllable free parameters.
In reality, the control of these parameters is achieved by adjusting the impact speed
and angle of the pellet on the shattering plate (see section 3.4.1.3). This is likely to
result in correlations between the pellet size and the distribution of shard sizes and
velocities. However, in lieu of a self-consistent model to capture these correlations,
the injection parameters are assumed to be independently variable in this work.

4.1.2 Ablation
We characterise the ablation rate by the time derivatives ṙp,k of the shard radii. The
expression used for ṙp,k is based on the updated NGS model presented in ref. [51].
Expressed in terms of the unidirectional incident heat flux qin carried by the bulk
plasma electrons and their effective energy Ein, this model gives

ṙp,k = −λ(X)
(
qin

q0

)1/3 (Ein

E0

)7/6 (rp,k
rp0

)4/3 1
4πr2

p,kρdens
. (4.3)

Here, the normalising radius, heat flux and effective energy are rp0 = 2 mm, q0 =
n0

√
2T 3

0 /(πme) and E0 = 2T0, with the representative temperature and density
T0 = 2000 eV and n0 = 1020 m−3, respectively. The solid mass density of the pellet
is denoted ρdens. The dependence on the deuterium-neon composition is accounted
for by the factor

λ(X) = [27.0837 + tan (1.48709X)]/1000 kg/s,

where X = ND2/(ND2 + NNe) is the deuterium fraction, ND2 is the number of
deuterium molecules and NNe is the number of neon atoms in the pellet. Note that
X is defined in terms of the number of deuterium molecules in the pellet, while
Ninj = 2ND2 +NNe is the number of injected atoms.

The heat flux and effective energy are calculated from a general electron momen-
tum distribution function, f , according to

qin = 1
4

∫
mec

2(γ − 1)vf dp (4.4)

and
Ein = 2

nfree

∫
mec

2(γ − 1)f dp. (4.5)

We note that equation (4.3) was derived assuming a Maxwellian electron momentum
distribution, and is not strictly applicable for a general distribution. However, it may
be assumed to be sufficiently accurate for the small deviations from a Maxwellian
present in the early stages of the disruption while the shards are still ablating, that
is, before a substantial runaway acceleration has occurred. The total free electron
density is nfree =

∫
fdp, c is the speed of light, and γ is the Lorentz factor. The factor

1/4 in equation (4.4) converts the isotropic heat flux to the average unidirectional
heat flux facing the pellet shards, and is strictly valid for a Maxwellian distribution
[59], whilst Ein reduces to 2TM for completely Maxwellian electrons.
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4.1.3 Material deposition
When the shards are ablated, the ablated material ionizes, and is therefore largely
confined by the magnetic field to the flux surfaces in the vicinity of the position
of the pellet shard where the ablation took place. As mentioned in section 3.5.2,
the homogenization of the ablated material over the flux surfaces, as well as the
temperature and pressure equilibration with the background plasma, occurs over a
time scale . 1 ms. This time scale is comparable to the thermal quench time scale,
as well as the time between the arrival of the first and last shard on a given flux
surface, while being relatively fast compared to the current quench time scale. The
homogenization and equilibration of the ablated material is therefore approximated
here to take place instantaneously, an assumption also made in other recent SPI
studies [24, 53, 57, 58]. The impact of this assumption is discussed in Appendix C.
Similarly, all other quantities involved, except for the pellet shard positions and radii,
are assumed to be constants over the flux surfaces. The flux surfaces are assumed
to have concentric circular cross-sections and are labeled with their minor radius
r. Moreover, we employ the large aspect ratio limit R0/a� 1, where R0 and a are
the major and minor radii of the plasma, respectively, so that the spatial geometry
becomes cylindrically symmetric.

The homogenized ion density increase on the flux surface with radius r due to
the ablation of the pellet material is given by(

∂nij
∂t

)
SPI

= −fij
Ns∑
k=1

4πr2
p,kṙp,kρdensNA

M
H(r, ρp,k), (4.6)

where nij is the density of charge state i of ion species j, and the factor fij denotes
the particle fraction of the ablated material that is deposited to nij . The pellet molar
mass is denoted byM, and NA is the Avogadro number. The radial distribution of the
homogenized density increase is described by the factor H(r, ρp,k) = h(r, ρp,k)/Afls(r),
where h(r, ρp,k)dr describes the fraction of the material deposited at a radius between
r and r + dr ablated from a pellet at radius ρp,k =

√
x2
p,k + y2

p,k. Here, Afls = 4π2rR0
is the area of the flux surface at radius r.

The width of the volume within which the ablated material is deposited may be
approximated by the width of the shielding cloud around the pellet, with a radius
denoted rcld. To account for the finite width of this cloud, previous studies have
used a Gaussian deposition kernel h ∝ exp [(r − ρp,k)2/r2

cld] [24, 56]. The calculations
made in e.g. ref. [46] show that a realistic value for rcld is of the order of 1 cm.
However, in many of the cases studied in this work, we are required by computational
feasibility to have a radial resolution that is significantly larger than such a width of
the pellet cloud, and the radial resolution then becomes the limiting length scale
for the spread of the ablated material. Moreover, since the numerical tool used in
this work, described in section 4.5, uses an implicit time-stepping carried out by a
Jacobian-based Newton solver, the computational expense increases rapidly with the
number of non-zero Jacobian-elements introduced by spreading the ablated material
over several flux surfaces. For these reasons, we use a delta function deposition kernel,
h = δ(r − ρp,k) which, when discretized in time, translates to a uniform distribution
over the distance traveled during the current time step, as detailed in Appendix A.
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The impact of the radial grid step size and the use of a Gaussian deposition kernel
with a finite width is investigated in Appendix C. These calculations verify that the
width of the deposition kernel has only a formal impact on the final density profile,
even when the radial grid step size is smaller than the pellet cloud width.

At the relatively high plasma temperatures into which the pellets are injected, the
fast ionization process of the lower charge states introduces a problematic bottleneck
in the need for time resolution. To circumvent this issue, we deposit the ablated
material directly to the equilibrium distribution of charge states associated with the
local density and temperature. With φj denoting the particle fraction of the pellet
material consisting of species j, the quantity fij appearing in equation (4.6) becomes
fij = φjn

eq
ij /ntot,j, where the equilibrium distribution of charge states is calculated

according to

Rijn
eq
i+1,j − Iijn

eq
ij = 0, i = 0, 1, ..., Z − 1,∑

i

neq
ij = ntot,j, i = 0, 1, ...Z. (4.7)

The total density of species j is denoted by ntot,j , and Iij(TM, nM) and Rij(TM, nM) are
the ionization and recombination rates, respectively, obtained from the OpenADAS
database [60]. The density nM of the Maxwellian population is taken to be the
density of electrons with momenta lower than a threshold phot

1, described in section
4.2, i.e. nM =

∫
0<p<phot

f(p)dp. The local increase in the electron density due to the
deposition of the pellet material is determined by the quasi-neutrality condition,
nfree = ∑

ij Zijnij, where Zij is the charge number of charge state i of ion species
j. The new electrons are added to the momentum distribution function at zero
momentum, as described in section 4.4.1, and are thus added to the density nM of
the Maxwellian population.

4.2 Particle and energy balance
When the cold pellet material is deposited, the hot plasma is initially cooled simply
by dilution of the thermal energy on the local flux surface over the new particles.
Thereafter, the partially ionized particles in the deposited material dissipate the
thermal energy as radiation, either directly through line radiation or indirectly by
ionization, resulting in a final radiative loss during recombination. Moreover, the
introduction of high-Z impurities is expected to trigger or accelerate the growth
of MHD instabilities resulting in a stochastisation of the magnetic field. This
stochastisation increases the transport of thermal energy out of the plasma, as
discussed in section 3.1. The thermal energy is further affected by local Ohmic
heating from the thermal part of the plasma current and, at high temperatures,
bremsstrahlung losses.

When evaluating the energy transport in the plasma, as well as the current
density described in sections 4.3 and 4.4, we treat the Maxwellian electrons and

1Although this part of the momentum distribution is not strictly Maxwellian, the collision
operator is linearised around a Maxwellian with density nM, as described in section 4.4.1, hence
the subscript M.
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the superthermal electrons separately. The separation is made by introducing
a momentum phot, and considering electrons with a momentum larger than phot
as superthermal. To increase the computational efficiency, we further divide the
superthermal electrons into two parts referred to as the hot population and the
runaway population, respectively, separated by a momentum pRE. The hot population
is characterized by the part fhot of the distribution function with phot < p < pRE,
while the runaway electrons are characterized by a density nRE, and are approximated
to travel with the speed of light. Typically, we set phot ≈ 10pth, where pth is the
thermal momentum (making phot a time-varying boundary), and pRE equal to a few
times mec. This choice of pRE corresponds to a speed within a few percent of c,
justifying the approximation of the speed of the runaway population. We note that
some of the electrons in the hot population might formally satisfy the definition of a
runaway electron if the critical runaway momentum lies between phot and pRE, but
these electrons will accelerate to a momentum higher than pRE in a comparatively
short time scale.

We now turn to the model used for the evolution of the energy density of the
Maxwellian electrons, WM = 3nMTM/2, and the ion charge state densities nij. The
evolution of the non-Maxwellian electrons, including the evolution of fhot and nRE,
will be treated in sections 4.4.1 and 4.4.2. The evolution of WM on the local flux
surface is governed by

∂WM

∂t
= σME

2
|| − nM

∑
ij

nij[Lij(TM, nM) + Eioniz
ij Iij(TM, nM)]

+
(
∂WM

∂t

)abl

ioniz
+ 1
r

∂

∂r

[
rDW

∂TM

∂r

]
+
∫
phot<p<pRE

∆Ėeef dp

− 1.69 · 10−38n2
M

√
TMZeff .

(4.8)

The first term on the right hand side corresponds to the Ohmic heating. The
conductivity σM is calculated using the expression derived in ref. [61], with relativistic
effects taken into account;

σM = σ̄
4πε20T

3/2
M

Zeff
√
mee ln Λ0

, (4.9)

where σ̄(TM, Zeff) is calculated by interpolation of the values tabulated in ref. [61].
This expression accounts for the contribution from both the test particle and field
particle part of the Coulomb collision operator, and is discussed further in section
4.3. Here we have also introduced the effective charge Zeff = ∑

ij Z
2
ijnij/nfree, the

dielectric constant ε0, the elementary charge e, the thermal Coulomb logarithm
ln Λ0 = 14.9 − 0.5 ln (nM/1020) + ln (TM/103) [29], and the electric field parallel to
the magnetic field lines E||. The component of the electric field perpendicular to
the magnetic field lines is neglected in agreement with the assumption of cylindrical
symmetry.

The second term corresponds to the line radiation and ionization losses. The line
radiation rates Lij(TM, nM) are taken from the OpenADAS database [60], and the
ionization energies Eioniz

ij are taken from the NIST database2. Note that ionization
2https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
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losses are still present when the net electron density does not increase, as in that case
the ionization and recombination processes are still active although they balance each
other. The change in the local charge state distribution of all ions due to ionization
and recombination is calculated by the time dependent rate equations(

∂nij
∂t

)
ioniz

= Ii−1,jni−1,jnM − IijnijnM +Ri+1,jni+1,jnM −RijnijnM. (4.10)

Thus, the total evolution of the charge state densities is given by

∂nij
∂t

=
(
∂nij
∂t

)
ioniz

+
(
∂nij
∂t

)
SPI

. (4.11)

The corresponding evolution of the electron density is determined by the quasi-
neutrality condition.

The third term in equation (4.8) accounts for the energy required to ionize the
ablated pellet material to the equilibrium charge state distribution described in
section 4.1. This gives an additional ionization loss according to(

∂WM

∂t

)abl

ioniz
= −

∑
ij

∆Ebinding
ij fij

Ns∑
k=1

4πr2
p,kṙp,kρdensNA

M
H(r, ρp,k), (4.12)

where ∆Ebinding
ij = ∑i−1

0 Eioniz
ij is the total energy required to ionize an atom of species

j from neutral to charge state i. The assumption of instantaneous homogenization and
equilibration locally over the flux surfaces means that the thermal energy absorbed by
the shielding cloud is immediately returned to the background plasma. We therefore
do not need any further energy loss terms directly associated with the pellet ablation
(assuming the shielding cloud is optically thick so that we may neglect radiative
losses from it).

The fourth term in equation (4.8) describes a diffusive energy transport due to
magnetic perturbations. When electrons follow stochastically perturbed magnetic
field lines, their radial dynamics may be approximated as a diffusion process. In a
tokamak geometry, a heuristic argument gives the Rechester-Rosenbluth form for
the radial diffusion coefficient, D = πqv||R0 (δB/B)2 [62], for a particle traveling
with a speed v|| along the field lines. The factor πqR0, where q ≈ 1 is the safety
factor, represents the parallel correlation length scale of the stochastic magnetic
field perturbation, and δB/B is the relative amplitude of the perturbation. The
local electron heat diffusion coefficient DW is calculated by integrating the diffusion
coefficient D over a Maxwellian with the local temperature TM:

DW = nM

(π3/2v3
TTM)

∫ mev
2

2

(
v2

v2
T

− 3
2

)
D(v) exp

(
− v

2

v2
T

)
dv, (4.13)

where vT =
√

2TM/me is the electron thermal velocity. Lacking a self-consistent
model for it, the evolution of δB/B is prescribed in our model. When studying
ITER-like scenarios, we typically set δB/B to the order of 10−3. This value results
in a transport loss time scale a2/DW , with DW evaluated at the initial temperature,
of the same order of magnitude as the expected thermal quench time in ITER [42].
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As a boundary condition for this diffusion, we assume TM = 0 at the plasma edge,
but with DW calculated at the temperature one grid point inside the edge to avoid
having zero transport through the plasma edge.

The fifth term in equation (4.8) describes the collisional energy transfer from hot
electrons to the Maxwellian electrons3. Here, we have ∆Ėee = 4πnMr

2
0 ln Λeemec

4/v,
where r0 = e2/(4πε0mec

2) is the classical electron radius and ln Λee is the energy
dependent Coulomb logarithm for electron-electron collisions. The expression for
ln Λee was obtained in ref. [63] by matching the thermal Coulomb logarithm ln Λ0

with the relativistic Coulomb logarithm ln Λc = ln Λ0 + ln
√
mec2/TM according to

ln Λee = ln Λ0 + 1
k

ln
1 +

(
2(γ − 1)mec

2

2TM

)k/2, (4.14)

where the interpolation parameter k was chosen to be k = 5. Finally, the last term
in equation (4.8) accounts for the bremsstrahlung losses.

4.3 Electric field evolution
The rapid cooling of the plasma is accompanied by a rapid drop in the conductivity,
resulting in the induction of an electric field, that later decays diffusively according to
equation (2.42) derived in section 2.4.3. In the cylindrical approximation, equation
(2.42) takes the form

µ0
∂j||
∂t

= 1
r

∂

∂r

(
r
∂E

∂r

)
, (4.15)

where j|| denotes the current density parallel to the field lines. The total current
density j|| is given by the sum of the Ohmic current density, carried by the Maxwellian
electrons4, and the hot electron and runaway current densities. The Ohmic current
density is calculated as jOhm = E||(σM − σfp) +

∫ phot
0 ev||f dp, where σM is the

conductivity given in equation (4.9). The first term compensates for the part of the
conductivity not captured by the conductivity σfp resulting from the test-particle
Fokker-Planck collision operator used in the kinetic equation described in section 4.4.1.
An expression for σfp was determined by running numerous DREAM simulations with
fixed parameters until the kinetically captured contribution to the Ohmic current was
equilibrated, and then calculating σfp by dividing the Ohmic current thus obtained
by the fixed value for E||. This data was used to fit an expression for σfp according to

σfp = σM

(
1 + c1

c2 + Zeff

)
, (4.16)

3As this interaction term depends on the energy distribution, which is not resolved for the
runaway population, only the hot population is accounted for in this interaction term.

4An exactly Maxwellian distribution does not carry a net current, so a small deviation from a
Maxwellian is needed for the electrons we refer to as the Maxwellian population to carry the Ohmic
current. The momentum scale of this deviation is however very small compared to the width of this
close to Maxwellian distribution, and therefore this population can still be treated as a Maxwellian
in other circumstances.
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with c1 = −1.406 and c2 = 1.888. The hot electron current density is jhot =∫
phot<p<pRE

ev||f dp, and the runaway current density is jRE = ecnRE. The boundary
condition for equation (4.15) at r = a is obtained by assuming the plasma to be
surrounded by a perfectly conducting wall at r = b > a, where the electric field is
set to zero. Matching the solution for r < a to the vacuum solution for a < r < b
gives E||(a) = a ln (a/b)∂E||/∂r|r=a.

4.4 Runaway generation

The induction of a strong electric field results in an acceleration of electrons into
the superthermal populations, eventually leading to the generation of a runaway
current. In this work, we capture the seed runaway generation from the hot-tail,
Dreicer, tritium decay, and Compton scattering mechanisms, as well as the subsequent
runaway multiplication by the avalanche mechanism. The hot-tail mechanism is an
intrinsically transient, kinetic effect resulting from the rapid temperature drop during
the thermal quench and the finite equilibration time of the tail of the distribution
function. Therefore, we invoke the kinetic equation described in section 4.4.1 during
the thermal quench to model this effect. When the kinetic equation is invoked, it
also captures the Dreicer mechanism. The runaway generation from tritium decay,
Compton scattering, and avalanche are however not accounted for by the kinetic
equation considered in this work, but are instead modeled as quasi-stationary sources
feeding particles directly into the runaway population. After the thermal quench,
when the hot-tail mechanism is no longer active, the Dreicer mechanism is also
modeled in a similar fluid-like fashion. These source terms are described in section
4.4.2.

4.4.1 Kinetic equation

In order to capture the hot-tail mechanism, we consider the gyro-averaged kinetic
equation with a linearised relativistic test particle Coulomb Fokker-Planck collision
operator. The reference Maxwellian around which this collision operator is linearised
is defined by the density nM and temperature TM, introduced in section 4.1. As the
kinetic equation is invoked here to study the comparatively small non-Maxwellian
population, while the Maxwellian population is evolved by the fluid models described
above, the field particle term in equation (2.26) is omitted (except that its effect
on the Ohmic current is accounted for by the conductivity correction described in
section 4.3). In addition to the test particle collision operator, we include a diffusive
radial transport term with the Rechester-Rosenbluth form of the diffusion coefficient.
The slowing down and deflection frequencies in the test particle operator are taken
to be those accounting for the energy dependence of the Coulomb logarithm, as well
as the effect of partial screening in collisions with partially ionized impurities, as
derived in ref. [63]. Using the coordinates p and ξ, where p is the magnitude of the
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momentum and ξ is the cosine of the pitch angle, this kinetic equation reads

∂f

∂t
+ eE

(
1
p2

∂

∂p

[
p2ξf

]
+ 1
p

∂

∂ξ

[(
1− ξ2

)
f
])

= 1
p2

∂

∂p

[
p3νsf

]
+

νD
2
∂

∂ξ

[
(1− ξ2)∂f

∂ξ

]
+ 1
r

∂

∂r

[
rD

∂f

∂r

]
+ Sδ(p̄), (4.17)

where we neglect the collisional energy-diffusion term, an assumption strictly valid
in the superthermal limit. The strength S of the delta function source term at
p̄ = p/(mec) = 0 is determined by the requirement that the total number of particles
on the kinetic grid must satisfy quasi-neutrality,

∫
f(p̄)dp̄ = nfree − nRE.

The total slowing down and deflection frequencies, νs and νD, both contain con-
tributions from electron-electron collisions and electron-ion collisions. The electron-
electron contributions, denoted νees and νeeD , respectively, are given by [64]

νee
s = νc

γ2Ψ1 −ΘΨ0 + (Θγ − 1)p̄e−(γ−1)/Θ

p̄3e1/ΘK2(1/Θ) ,

νee
D = νc

γp̄5e1/ΘK2(1/Θ)

[
(p̄2γ2 + Θ2)Ψ0 + Θ(2p̄4 − 1)Ψ1

+ γΘ[1 + Θ(2p̄2 − 1)]p̄e−(γ−1)Θ
]
,

Ψn =
∫ p̄

0
(1 + s2)(n−1)/2e−(

√
1+s2−1)/Θ ds,

Θ = TM

mec2 ,

νc = 4π ln ΛeenMr
2
0c, (4.18)

where K2 is the second-order modified Bessel function of the second kind. The
electron-ion contributions νeis and νeiD , assumed to be against infinitely massive ions,
with partial screening effects taken into account, are given by [63]

νeis = 4πcr2
0
γ2

p̄3

nM ln Λee +
∑
ij

nijNe,ij

[
1
k

ln(1 + hkij)−
p̄2

γ2

] ,
νeiD = 4πcr2

0
γ

p̄3

∑
ij

nij
(
ln ΛeiZ

2
ij + gij(p̄)

)
,

gij = 2
3(Z2

tot,j − Z2
ij) ln[1 + (āij p̄)3/2]− 2

3N
2
e,ij

(āij p̄)3/2

1 + (āij p̄)3/2 ,

hij = mec
2

Iij
p̄
√
γ − 1,

Ne,ij = Ztot,j − Zij,

ln Λei = ln Λ0 + 1
k

ln
1 +

(
2p̄
√
mec2

√
2TM

)k, (4.19)

where Iij is an ionic mean stopping power and āij is an ion-specific screening
length scale (normalised to the Bohr radius), both of which are tabulated in ref. [63].
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Moreover, ln Λei is the energy dependent Coulomb logarithm for electron-ion collisions,
obtained in a similar way to ln Λee described in section 4.2. The slowing down
frequency νs also contains an additional term νbr

s accounting for the effect of radiation
losses due to bremsstrahlung, based on a mean-force model [65], according to

νbr
s = γ

p̄
αr2

0c
∑
ij

nijZ
2
tot,j

12γ2 + 4
3γp̄ ln(γ + p̄)

− 8γ + 6p̄
3γp2 ln2(γ + p̄)− 4

3 + 2F [2p̄(γ + p̄)]
γp̄

,
F (x) =

∫ x

0

ln(1 + y)
y

dy, (4.20)

where α ≈ 1/137 is the fine-structure constant. The effects of screening of partially
ionized impurities on the bremsstrahlung emission have been ignored, so that the
ions are only included in this expression through their total charge and density.

4.4.2 Fluid runaway sources
The time evolution of the runaway population is determined by the sum of the
momentum space flux across pRE from the hot population, the sources feeding
particles directly into the runaway population, and the transport due to magnetic
field perturbations:

∂nRE

∂t
= Fp +

(
∂nRE

∂t

)Dreicer

+
(
∂nRE

∂t

)tritium

+
(
∂nRE

∂t

)γ
+
(
∂nRE

∂t

)avalanche

+ 1
r

∂

∂r

[
rD

∂nRE

∂r

]
, (4.21)

where the flux Fp is given by Fp = 2πp2 ∫
p=pRE

(eE||ξ − pνs)f dξ, with the integral
carried out along the upper momentum boundary pRE of the domain representing the
kinetic hot electrons. Note that this term is only active when the kinetic equation is
invoked, and in that case it accounts for both the hot-tail and Dreicer mechanisms.
When the kinetic equation is not invoked, the Dreicer mechanism is instead accounted
for by the source term (∂nRE/∂t)Dreicer, calculated by a neural network trained on
output from kinetic simulations [32].

The runaway seed produced by tritium decay is modeled as [16, 35]
(
∂nRE

∂t

)tritium

= ln (2)nT

τT
f (Wcrit) , (4.22)

where nT is the tritium density, τT ≈ 4500 days is the half-life of tritium. The
fraction of the electrons created by tritium β− decay above the critical runaway
energy Wcrit is given by f(Wcrit) ≈ 1− (35/8)w3/2 + (21/4)w5/2 − (15/8)w7/2, with
w = Wcrit/Q and Q = 18.6 keV, corresponding to the maximum energy of the β−

electrons. The critical runaway energy Wcrit is given by Wcrit = mec
2
(√

p̄2
? + 1− 1

)
,
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in terms of the critical momentum for runaway acceleration (normalised to mec) with
screening effects taken into account, implicitly given by

p̄? =
4
√
ν̄S(p̄?)ν̄D(p̄?)√
E||/Ec

, (4.23)

as derived in Appendix A of ref. [19]. The collision frequencies ν̄s and ν̄D have here
been normalised to νc, and Ec = νcmec/e is the critical electric field for runaway
generation introduced in section 2.3.3.

Runaway generation due to Compton scattering of gamma photons from the
activated wall, taken from ref. [16], is based on the gamma photon energy spectrum

Γγ(Eγ) = Γγ0 exp (− exp (z)− z + 1), (4.24)

with z = [ln (Eγ[MeV]) + 1.2] /0.8 and Γγ0 = 4.44 · 1017 m−2s−1MeV−1, giving a
total flux of 1018 m−2s−1, when integrated over the gamma photon energy Eγ. This
spectrum was obtained using radiation transport calculations performed at several
poloidal locations in ITER [16]. Using the expression for the total Compton cross-
section [16]

σ(Eγ) = 3σT

8

{
x2 − 2x− 2

x3 ln 1 + 2x
1 + x(1− cos θc)

+ 1
2x

[
1

[1 + x(1− cos θc)]2
− 1

(1 + 2x)2

]

− 1
x3

[
1− x− 1 + 2x

1 + x(1− cos θc)
− x cos θc

]}
, (4.25)

the corresponding runaway generation rate can be evaluated as(
∂nRE

∂t

)γ
= ntot

∫
Γγ(Eγ)σ(Eγ)dEγ. (4.26)

The critical Compton scattering angle θc for which an energy equal to Wcrit is
transferred to the electron from a photon with energy Eγ is given by

cos θc = 1− mec
2

Eγ

Wcrit/Eγ
1− (Wcrit/Eγ)

.

The Thomson scattering cross section is σT = 8π/3[e2/(4πε0mec
2)]2, with x =

Eγ/(mec
2), and ntot is the total (free+bound) electron density. The dependence on

ntot rather than the free electron density reflects the fact that the gamma photon
energies are much larger than the ionization energies of the ions and atoms in the
plasma. Thus, the bound electrons may be scattered into the runaway momentum
region essentially to the same extent as the free electrons.

The growth rate for the avalanche process is given by [20](
∂nRE

∂t

)avalanche

= enRE

mec ln Λc

ntot

nM

E|| − Eeff
c√

4 + ν̄S(p̄?)ν̄D(p̄?)
, (4.27)
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where Eeff
c is the effective critical electric field taking into account screening effects,

as well as bremsstrahlung and synchrotron radiation losses due to the gyro-motion of
the electrons, which were not accounted for in the expression introduced in section
2.3.3. The expression for Eeff

c was derived in ref. [66]5. To obtain a well-behaved
formula also for E|| < Eeff

c , which we use to approximately describe the runaway
decay at near-critical electric fields (also in the absence of losses due to magnetic
perturbations), we replace p?(E||) by p?(Eeff

c ) for E|| < Eeff
c . Finally, the last term

in equation (4.21) accounts for the transport of runaway electrons due to magnetic
field perturbations, with the Rechester-Rosenbluth diffusion coefficient D evaluated
for v|| = c.

4.5 Numerical implementation and settings
Having described our model from a physics point of view, we here give a brief
overview of the numerical tool DREAM (Disruption Runaway Electron Avoidance
Model) [25], and typical settings used in the disruption studies presented in chapter
5. Based on an input specifying the injection parameters and pre-disruption plasma
conditions, DREAM is capable of self-consistently calculating the time evolution
of the background plasma properties, the electron momentum distribution and the
runaway current during a mitigated tokamak disruption. Specifically, the user first
defines plasma geometry, determined by the plasma minor radius a, the minor radius
of the tokamak wall b, and the tokamak major radius R0. The user also defines the
SPI settings, defined by the number Ninj of injected particles, the number of shards
Ns into which the pellet is shattered, the particle fraction φj of the pellet consisting
of species j, the average shard speed 〈vp〉 and corresponding distribution width ∆vp,
and the divergence angle αp. Finally, the user provides initial profiles of the current
density j||, temperature TM and ion densities nij. Based on this input, the initial
conditions for the pellet shard parameters are chosen randomly; with a shard size
distribution given by equation (4.1) and uniform speed and angular distributions.
The initial profile for j|| is assumed to be purely Ohmic, which also imposes an initial
condition on the electric field, as E|| = jOhm/σM = j||/σM. The input profiles for TM
and nij are used directly as initial conditions, with nij typically describing a fully
ionized deuterium or deuterium-tritium plasma. The initial momentum distribution
of the electrons is chosen to be a Maxwellian at the local initial temperature.

From these input parameters and associated initial conditions, DREAM calculates
the subsequent time evolution of the pellet and plasma parameters, the model of which
can be summarised as follows. The pellet shards follow straight lines as described
by equation (4.2), and the evolution of the shard sizes is governed by the ablation
rate (equation (4.3)). The resulting density increase is given by equation (4.6), and
the resulting cooling is calculated by equation (4.8). Once the pellet material is
deposited, the evolution of nij is governed by ionization and recombination according
to equation (4.10). The electric field evolution resulting from the rapid change in
the conductivity is given by the induction/diffusion process described by equation
(4.15).

5A numerical implementation of Eeff
c is available at https://github.com/hesslow/Eceff
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The momentum distribution of the electrons is resolved in the range 0 < p < pRE,
and is evolved using the kinetic equation (4.17) (referred to as the “fully kinetic”
mode in ref. [25]). The distribution thus calculated accounts for the current carried
by the (essentially) Maxwellian and hot electron population, complemented with a
contribution E||(σM − σfp), accounting for the field particle term not being included
in equation (4.17), as described in section 4.3. Finally, electrons passing the upper
momentum boundary, pRE, are added to the fluid-like runaway population, together
with the contributions from the additional runaway sources summarised by equation
(4.21), which conclude the equation system. The self-consistent solution of this
equation system, performed with DREAM, is now briefly described below.

The equation system is discretized using a finite volume method (see e.g. ref. [67])
for the discretization of the momentum and configuration space, and an Euler
backward scheme for the time discretization. The momentum space is divided
into Np × Nξ grid cells, the configuration space into Nr grid cells, and the time
is discretized with a time step ∆t. The momentum scale of the features of the
distribution function are typically much smaller at low momenta compared to high
momenta towards the end of the temperature drop, when the momentum scale of
the Maxwellian population becomes rather narrow. In order to properly resolve
the low energy region throughout the whole disruption without over-resolving the
high energy region, the momentum grid is therefore divided into two parts with
different resolutions, separated at a momentum p̄sep

6. The resulting momentum
grid is discretized by Np1 uniformly spaced grid cells between 0 < p̄ < p̄sep and Np2
uniformly spaced grid cells between p̄sep < p̄ < p̄RE.

Approximating the derivatives with central differences in agreement with the
discretization, the differential equations included in the model are translated into an
algebraic equation system for the cell averages of the various quantities at the next
time step. The evolved quantities are thus computed in the center of the cells, while
the fluxes between adjacent cells are calculated on the cell surfaces, ensuring that the
flux into a grid cell exactly equals the flux out of adjacent grid cells. This guarantees
conservation of the integrals of the various quantities within machine precision, in
the absence of sources and edge losses, thus satisfying the physical conservation laws
of e.g. particle number and energy. The interpolation from the center of the cells to
the cell boundaries, needed for the calculation of the fluxes, is performed in a way as
to preserve positivity of the evolved quantities.

The implicit solution for the evolved quantities in the next time step is obtained
via Newton iteration. Letting X i denote a vector containing the cell averages of
every quantity in every cell at time step i, the equation system to be solved can be
written in the form F (X i+1,∆t) = 0. The Newton iteration scheme can then be
expressed as

X i+1
j+1 = X i+1

j − J−1(X i+1
j ,∆t)F (X i+1

j ,∆t), (4.28)

where the subscript on X denotes the iteration number and J−1(X i+1
j ,∆t) is the

inverse of the Jacobian of F (X i+1
j ,∆t). Here we have also explicitly stated the

dependence of J−1 and F on the time step ∆t, which enters through the discretized

6Not to be confused with the momentum p̄hot separating the Maxwellian and hot electron
population.
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time derivatives. The Jacobian is constructed based on analytical derivatives, al-
though some are approximated or even neglected for simplicity and/or limiting the
complexity of the construction and inversion of the Jacobian. The iteration starts at
the quantity vector in the previous time-step, i.e. X i+1

0 = X i, and continues until
a tolerance specified by the user is satisfied separately for every evolved quantity.
Specifically, the convergence condition for the part X i+1

n,j+1 corresponding to quantity
n is

||X i+1
n,j+1 −X i+1

n,j ||2 ≤ εabs
n + εrel

n ||X i+1
n,j+1||2, (4.29)

where || · ||2 denotes the 2-norm and the absolute and relative tolerances εabs
n and εrel

n

are specified by the user.
A detailed description and demonstration of the core functionality of DREAM has

recently been compiled and submitted for publication elsewhere [25]. In this work,
the functionality of DREAM has been extended to include the SPI model described
in section 4.1. A non-trivial design choice related to the extension implemented in
this work concerns the singularity of the ablation rate in equation (4.3) at rp,k = 0.
To circumvent this issue, we remove the singularity by a change of variable according
to Yp,k = r

5/3
p,k , such that the ablation rate can be expressed as

Ẏp,k = −λ(X) 5
3r4/3

0

(
qin

q0

)1/3 (Ein

E0

)7/6 1
4πρdens

, (4.30)

for Ẏp,k > 0. The discretized density source terms, corresponding to equation (4.6),
are related to the change of Ẏp,k in a particle conserving manner, assuming a delta-like
deposition kernel whose discretisation is described in Appendix A. The density source
terms contain contributions from all shards for which Yp,k > 0 in the beginning of
the time step. However, small negative values of Yp,k > 0 and the corresponding
density source term are allowed during an individual time step, to avoid convergence
issues for the Newton iteration process related to a non-smooth Jacobian at Yp,k = 0.

In addition to the input related to the physical state of the system, DREAM
also requires specification of the numerical parameters regarding the discretization
and Newton iteration process. The most computationally efficient parameters vary
from case to case, and also between the various parts of a disruption, but here we
give a set of typical numerical parameters for the simulations shown in chapter 5.
By default, the relative tolerance εrel

n = 10−6, and the absolute tolerance is disabled,
i.e. εabs

n = 0. Furthermore, we typically set the time step to the order of 1-10 µs,
choosing a time step in the shorter end of this range during the part of the thermal
quench when the majority of the thermal energy loss takes place and in the longer
end of this range for the subsequent current quench and runaway plateau.

In order to resolve the cold electron bulk at the end of the thermal quench, a
momentum resolution of the bulk corresponding to a sub-eV increment in energy
is required. Therefore, we discretize the momentum grid below p̄sep = 0.07 with
a comparatively high resolution of Np1 = 70 grid cells uniformly spaced between
p̄ = 0 and p̄ = p̄sep. The features of the hot tail, which can form at higher momenta,
have a substantially larger momentum scale, and therefore do not require as high
resolution. For this part of the momentum grid, with p̄sep < p̄ < p̄RE = 3, we use
Np2 = 50 uniformly spaced grid cells in p̄. In all of momentum space, the pitch angle
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variable ξ is discretized by Nξ = 5 grid cells uniformly spaced between −1 and 1.
Finally, we discretize the radial dimension with Nr = 11 grid cells. This resolution
was found to be sufficient to resolve the features of interest in this work, while still
enabling extensive scans in the SPI parameters of interest, even with the somewhat
computationally expensive thermal quench simulations with the kinetic part of the
model invoked.
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Having established the SPI and disruption model in chapter 4, we are now ready to
address the main goal of this work, which is to evaluate the disruption mitigation
performance in an ITER-like plasma of the two-stage deuterium-neon injection
scheme introduced in section 3.4.2.2. With this scheme, the plasma is first cooled
by dilution down to the 100 − 1000 eV range by a deuterium injection, without
significantly affecting the thermal energy density (and hence the pressure). A few
ms later, neon is injected, with the aim to radiate away most of the thermal energy.
A major advantage of the temporal separation between the injections is that the
intermediate equilibration of the electron momentum distribution has the potential
to significantly reduce the hot-tail runaway generation. Another advantage is that
the radiative loss of thermal energy becomes larger compared to the transport losses
if the thermal quench is triggered from a lower temperature. This is advantageous
because it would help to spread the heat load on the surrounding structures over a
wider area. These aspects are therefore particularly emphasised in our investigation.

The rest of this thesis is structured as follows: in section 5.1, we investigate the
effects of the SPI engineering parameters defined in section 4.1 on the deposition
profile of the first deuterium injection. The goal here is to find parameters where
the density increase covers the whole plasma, while still minimizing the amount of
pellet material passing through the core without being ablated. Section 5.2 contains
a similar investigation for the secondary neon injection following a representative
example of a primary deuterium injection. The dynamics of a typical two-stage
injection are also compared to the dynamics of a single stage injection with similar
injected quantities of deuterium and neon in section 5.2.1. Having found suitable
parameters for efficient use of the pellet material, the radiated fraction of the thermal
energy as a function of the number of injected deuterium and neon particles is
investigated in section 5.2.2. Next, we invoke the kinetic equation from section 4.4.1
to study the reduction of the hot-tail runaway generation during a two-stage SPI
compared to a single stage SPI in section 5.2.3. The subsequent current evolution
during the current quench is studied in section 5.3, including the hot-tail seed as
well as the other primary sources and the avalanche mechanism described in section
4.4.2. The implications and validity of these results are discussed in chapter 6.
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5.1 First stage deuterium injections

We start with addressing the problem of finding parameters which give an efficient
density increase in the first-stage deuterium injection. The parameters to be set,
defined in section 4.1, are the number of injected deuterium and neon particles, Ninj,D
and Ninj,Ne, the number of shards Ns,D and Ns,Ne the pellets are shattered into, the
pellet speeds and variances 〈vp,D〉, ∆vp,D, 〈vp,Ne〉 and ∆vp,Ne, and the divergence
angles ∆αp,D and ∆αp,Ne of the injected shards.

In order to achieve the desired dilution of the initially hot plasma, from an
initial temperature in the 10 keV range down to the 100-1000 eV range, an electron
density increase of the order of 10-100 times the initial density is required. The
corresponding number of assimilated particles is of the order of 1024−1025. Moreover,
the requirement of a fast reaction time of the disruption mitigation system favours fast
pellet speeds. A fast pellet speed also makes it possible to achieve core penetration
with a smaller amount of injected particles. In that way, using fast pellets extends the
available parameter space of post-injection densities compared to a slower injection.
For large injections, the assimilation might have to be enhanced to avoid shards
passing through the plasma without ablating. This can be done by shattering the
pellet into more shards, as discussed in section 3.4.1.3.

In this chapter, we search for suitable injection parameters for ITER-like plasmas
with initial temperature profile TM(r) = T0(1 − 0.99(r/a)2), central temperature
T0 = 20 keV, and initial density nM = 1020 m−3 at all radii. The profiles used
here have previously been used to study massive material injections in ITER-like
scenarios [19], assuming flat deposition profiles. For the initial ion composition, we
consider both a pure deuterium plasma and an even mix of deuterium and tritium,
the latter corresponding to the nuclear operation phase. The plasma minor radius
is a = 2 m, the radius of the conducting wall (used to set a boundary condition
on the electric field, see 4.3) is b = 2.15 m and the major radius of the tokamak is
R0 = 6.2 m. The initial plasma current is Ip = 15 MA, with a radial profile given
by j||(r) = j0(1 − (r/a)2)0.41, with j0 = 1.69 MA/m2. While the pellet shards are
still present in the plasma, the number of superthermal electrons was found to be
too small to have a significant impact on any of the plasma parameters relevant for
the ablation of the shards. The superthermal electrons are therefore ignored in the
simulations shown before section 5.2.3.

As explained in the beginning of this section, it is beneficial to have fast pellet
speeds. We therefore consider the fastest expected injection speeds possible. We
recall from section 3.4.1.3 that these are 〈vp,D〉 = 800 m/s for deuterium pellets and
〈vp,Ne〉 = 200 m/s for neon pellets. For the distribution of pellet speeds, we assume
∆vp = 0.2〈vp〉 for both deuterium and neon pellets. Moreover, we fix the divergence
angle ∆αp = 20◦ for both deuterium and neon pellets. This parameter primarily
affects how many shards pass through the innermost flux surfaces, and an increased
divergence can therefore shift the deposited density profile from the core further
out in the plasma. While this property might be of interest when fine-tuning the
density profile, we are able to achieve satisfactory density profiles with our fixed
value of ∆αp. Fixing this value is further motivated by the remark in ref. [19], that
the current quench dynamics is rather insensitive to the details of the density profile
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for a given number of injected particles, as long as core penetration is achieved. We
also fix the position at which the pellets are shattered to the tokamak wall on the
horizontal mid-plane, i.e. at position (x0, y0) = (b, 0).

The injection parameters left to investigate are the number of injected deuterium
and neon particles Ninj,D and Ninj,Ne, and the number of shards Ns,D and Ns,Ne into
which the pellets are shattered. In order to make the most efficient use of the pellet
material, the number of shards for a given number of injected particles should be
chosen to achieve core penetration without leaving any unablated pellet material.
To this end, we perform a scan of the assimilation rate, i.e. the fraction of the
pellet material that is deposited in the plasma, as a function of the number of
injected particles and the number of shards. Consistently with the assumption of
no correlations between the injection parameters mentioned in section 4.1, these
parameters are varied independently of each other.

The deuterium assimilation rate as a function of Ninj,D and Ns,D is shown in
figure 5.1 a). Core penetration is achieved in the region of this parameter space
to the right of the green line. More specifically, here we define core penetration as
obtaining a density increase in the core of 10% of the largest density increase in the
plasma. For a large number of shards, the green line is expected to mostly follow the
contour marking 100% assimilation rate. The slight discrepancy seen in figure 5.1 a)
is explained by the finite radial resolution. For a low number of shards, however, the
probability that enough shards will pass through the small innermost flux surfaces
decreases, making core penetration less likely. This can affect the assimilation rate
significantly, and is the reason behind the horizontal part of the green line at lower
Ns,D. This study now provides us with an optimal way of choosing Ns,D for a given
Ninj,D (within the model at hand), by choosing Ns,D close to the 100% assimilation
contour and to the right of the green line in figure 5.1 a). However, to make sure
that a sufficient core density is achieved, we include a safety margin and choose Ns,D
along the 97% contour.

Figure 5.1 b-d) show the profiles of the deuterium density, temperature and
thermal energy density after the first injection stage. Specifically, the profiles are
shown at 1 ms after the time tpass,D when all deuterium shards have passed through
the center (or would have if they were not completely ablated). All three panels show
profiles for Ninj,D = 1.58 · 1024 and a varying number of shards. We see in panel b)
that for the smaller numbers of shards, the density increase peaks close to the core.
This behaviour is expected, as the initial temperature, and hence the ablation rate, is
the highest in the core. The size of a flux surface is also proportional to its radius r,
so that more particles have to be deposited to achieve a given density increase further
out in the plasma. Note, however, that for the innermost flux surfaces, the covered
angle is smaller than the divergence of the plume of shards. The number of shards
passing through these flux surfaces therefore decreases with decreasing r, moving
the density peak away from the core. Moreover, as the number of shards increases,
so does the ablation rate, as discussed in the beginning of this section. This makes
the shards ablate more of their material earlier along their trajectories, moving the
maximum density even further outwards. If the average shard size becomes small
enough, such as in the Ns,D = 3000 case in figure 5.1, all shards burn out before they
reach the core.
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In panel c), we see that the post-injection temperature is of the order of a few
hundred eV, as desired, in the regions that were effectively reached by the shards.
However, in some cases there are areas with little or no deposition of pellet material,
and in these areas the temperature remains higher. The latter is most clearly seen
on the temperature profile for Ns,D = 3000, where the temperature remains in the
initial ∼ 20 keV range in the innermost part of the plasma, which is not reached by
any pellet shards.

Finally, we also note in panel d) that the energy density, and hence the pressure,
is only slightly affected by the pellets. The reason for this is that the pure deuterium
pellets do not cause significant radiative losses, but only dilute the thermal energy in
the plasma. Keeping the pressure perturbation small during this first injection stage
is essential, because it favours avoiding an unwanted acceleration of the growth of
MHD instabilities. As described in the introduction of this chapter, thermal energy
is instead intended to be dissipated radiatively by the neon in the second injection
stage, which is the subject of the next section.
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Figure 5.1: a) Assimilation rate as a function of the number of injected deuterium
particles Ninj,D and number of shards Ns,D. The green line marks the region of the
parameter space where core penetration is achieved, defining core penetration as
obtaining a density increase in the core of 10% of the largest density increase in
the plasma. The other panels show b) deuterium density, c) temperature and d)
thermal energy density 1 ms after tpass,D, resulting from pure deuterium SPIs with
Ninj,D = 1.58 · 1024 and varying numbers of shards (colour-code given in panel b).
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5.2 Second stage neon injections
Having studied the outcome of the first-stage deuterium injection for a range of
controlling parameters, we now perform a similar analysis of the outcome of the
secondary neon injection. As the purpose of this neon injection is to dissipate
energy through radiation rather than cooling by dilution, the desired neon density
is orders of magnitude smaller than the injected deuterium density. Informed by
the range of neon densities found in ref. [19] to give the most favourable current
quench times and runaway currents, we choose to scan logarithmically in the range
1022 < Ninj,Ne < 1024. As the neon pellets considered here are smaller than the
deuterium pellets studied in section 5.1, we also consider somewhat smaller numbers
of neon shards. The delay of the neon injection is chosen so that the neon shards
enter the plasma edge at t = tpass,D = 3.4 ms after the shattering of the deuterium
pellet.

Figure 5.2 a) shows the assimilation rate as a function of Ninj,Ne and Ns,Ne, for
a neon injection following a first stage deuterium injection with Ninj,D = 1024 and
Ns,D = 66. The number of deuterium shards was chosen along the 97% assimilation
contour in figure 5.1. As the initial temperature is now only a few hundred eV, only
the smallest neon pellets considered have the majority of their content ablated. For
the largest neon pellets, the assimilation rate is only a few percent. The assimilation
rate improves when the number of shards increases, but we note that this trend slows
down at Ns,Ne ∼ 50. This is due to the first shards arriving at a given flux surface
causing enough cooling to reduce the ablation rate for the later shards to a negligible
level, resulting in a saturation of the assimilation rate.

The other panels in figure 5.2 show the neon density, temperature and thermal
energy density 1 ms after tpass,Ne = 17.5 ms (defined similarly to tpass,D but for the
neon shards). The injection parameters shown are Ninj,Ne = 1023 and a varying
number of shards. Similarly to the deuterium density profiles, the neon density
profiles peak slightly outside the core, due to the dependence of the flux surface
size and number of particles passing through the flux surfaces on their radius. The
neon densities are, however, approximately 1-2 orders of magnitude lower than the
deuterium densities. The final temperature has now decayed to the 5 eV range, where
further decay is prevented by the Ohmic heating from the plasma current. Finally,
we note that the thermal energy density is essentially completely dissipated by the
neon radiation. The associated pressure gradient developing as the shards move
through the plasma is expected to result in a rapid growth of MHD instabilities,
and therefore a substantial magnetic perturbation should be accounted for when the
neon shards enter the plasma. However, as the temperature is already relatively low
when the neon shards enter the plasma, the effect of this magnetic perturbation will
be found to be quite moderate when investigated in section 5.2.1 and 5.2.2.
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Figure 5.2: a) Assimilation rate for the secondary neon injection as a function of
Ninj,Ne and Ns,Ne, following a deuterium SPI with Ninj,D = 1024 and Ns,D = 66. The
number of deuterium shards was chosen along the contour marking 97% assimilation
in figure 5.1 a). The remaining panels show the neon density (b), temperature (c)
and thermal energy density (d) 1 ms after tpass,Ne, for Ninj,Ne = 1023 and a varying
number of shards (colour-code given in panel b).

5.2.1 Single vs two-stage injection dynamics
We continue our analysis by taking a closer look at the spatio-temporal evolution
of the most relevant plasma parameters during a representative two-stage injection.
As a reference, we construct a single-stage injection of a mixed neon-deuterium
pellet containing the same number of injected neon and deuterium particles. For
the two-stage injection, we use Ninj,D = 2 · 1024, Ns,D = 1742, Ninj,Ne = 1023 and
Ns,Ne = 50. The number of shards was again chosen along the 97% contour in figure
5.1 a). For the single-stage injection, we use a pellet consisting of 95% deuterium
and 5% neon, with a total of 2 · 1024 atoms shattered into 1742 shards. The larger
mass of the mixed pellet lowers the maximum achievable pellet speed (see section
3.4.1.3), and we therefore lower 〈vp〉 to 600 m/s for the mixed neon-deuterium
pellet. Moreover, we model the effect of magnetic perturbations with an amplitude
of δB/B = 0.001 (assumed to be constant in space and follow a step function in
time) when the neon shards (or mixed deuterium-neon shards) enter the plasma.
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This is done in order to emulate the stochastisation of the magnetic field resulting
from the perturbations of the plasma caused by the pellet, as discussed in section
4.2. The magnetic perturbation is assumed to be active during the entire part of the
disruption studied in this section.

The spatio-temporal evolution of the neon and deuterium density, thermal energy,
temperature, electric field and current density, for the two-stage injection, are shown
in figure 5.3. The two solid green lines mark the trace of the fastest and slowest
deuterium shards (for shards with αp = 0), and the dashed green lines mark the
corresponding trace for the neon shards. In the upper panels of figure 5.3, we see a
clear increase in the deuterium density and neon density between the corresponding
pair of green lines. However, the increase in the neon density saturates quite closely
to the first dashed green line, especially in the inner part of the plasma. The reason
for this is that the neon deposited from the first arriving shards radiatively cool the
plasma enough to impede the ablation of the later shards.

Looking at figure 5.3 c-d), we again see that the thermal energy density is only
slightly affected by the deuterium injection, while the temperature falls to a few
hundred eV. When the neon shards enter the plasma, the thermal energy density
is dissipated over a millisecond time scale or faster in the parts of the plasma that
have been reached by the neon shards. Consequently, the temperature drops to a
few eV on a similar time scale. The onset of the magnetic perturbations causes some
diffusion of the thermal energy density in the parts of the plasma that have not
yet been reached by the neon shards. However, the resulting contribution to the
dissipation rate of the thermal energy is still quite moderate, in total dissipating
6% of the initial thermal energy. Notably, this value is smaller than the 10% limit
mentioned in section 3.2, and much smaller than the radiative losses that dissipate
almost all of the remaining thermal energy. Although it should be emphasised that
our model for the thermal energy is rather crude, assuming an immediate onset of a
prescribed magnetic perturbation that then remains constant in time and space, it
can still be of interest for comparing the calculated transported losses in different
scenarios.

In figure 5.3 e-f), we see the strong increase in the electric field in connection
with the second temperature drop, and the start of the subsequent current decay.
We also see a radial spike in the current profile moving inwards along with the neon
shards. This spike is caused by the diffusion of the electric field, induced where
the plasma has been cooled by the neon shards, into the still hotter region that
the neon shards have not yet reached. In the hotter region, the conductivity is still
high enough that even a relatively modest increase of the electric field can cause a
significant increase in the (Ohmic) current density. As the neon shards move further
into the plasma, so does the location of the conductivity drop, resulting in a rather
fast resistive reduction of the radial current spike. This process is then repeated,
causing the radial current spike to move inwards until both the neon shards and the
current spike reach the core. When the temperature makes a further drop to around
1 eV in the outer part of the plasma, a similar set of spikes in the electric field are
seen. This temperature drop occurs when the Ohmic current density is sufficiently
low so that the Ohmic heating can no longer sustain a temperature in the few eV
range. The conductivity in the nearby plasma is however too low for another set of
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spikes in the current density to form.
When the neon shards have reached the core, in most cases, the current starts

to decay in all parts of the plasma. As we will see in section 5.3, however, in some
cases the Ohmic heating, amplified by the radial current spike, can cause parts of the
plasma to re-heat. The re-heating is accompanied by an increase in the conductivity,
and as the electric field diffuses into the re-heated regions the current density can
initially increase locally. The decay of the total current is also comparatively slow,
with a time scale of the order of seconds.
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Figure 5.3: Spatio-temporal evolution of the deuterium density (a), neon density
(b), thermal energy density (c), temperature (d), electric field (e) and current density
(f) during a two-stage SPI injection with parameters Ns,D = 1724, Ninj,D = 2 · 1024,
Ns,Ne = 50, and Ninj,Ne = 1 · 1023. The mean speed of the deuterium shards is
〈vp,D〉 = 800 m/s and the mean speed of the neon shards is 〈vp,Ne〉 = 200 m/s. A
diffusive heat transport with δB/B = 0.001, constant in space and time, is activated
once the neon shards enter the plasma.
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Turning now to the single-stage injection, one of the most noticeable differences
compared to the two-stage injection is that the neon and deuterium densities now
increase simultaneously, as seen in figures 5.4 a) and b). The neon and the deuterium
are now delivered by the same pellet, and therefore their radial density profiles are
proportional. As the diffusion of the thermal energy now starts while the plasma
still has a temperature of several keV, it has a much more substantial effect on the
thermal energy density and the temperature compared to the two-stage injection, as
seen in panels c) and d).

The diffusive decay of the temperature in the inner parts of the plasma before
the arrival of the shards reduces the ablation there. The resulting density profiles
therefore have the their maximum moved outwards compared to the density profiles
of the two-stage injection. The fast dilution cooling by the deposited deuterium
however still reduces the transport coefficient for the thermal energy in the regions
passed by the shards. This gives rise to a ∼ 0.5 ms long plateau-like phase in the
local temperature evolution, reminiscent of the temperature plateau between the
injections in the two-stage case. As a result, the fraction of the thermal energy lost
by transport is limited to 24%. This is however substantially larger than the 6%
obtained for the two-stage injection. This reduced transport also causes thermal
energy to pile up in the cold region, giving rise to the off-center maximum aligned
with the shard trajectories in the r− t diagram in figure 5.4 c). The evolution of the
electric field and current density essentially follow the temperature evolution in a
similar way as seen in the two-stage injection.
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Figure 5.4: Spatio-temporal evolution of the deuterium density (a), neon density
(b), thermal energy density (c), temperature (d), electric field (e) and current density
(f) during a single stage mixed neon-deuterium SPI, with parameters chosen to give
similar assimilated densities as the two-stage injection shown in figure 5.3. The pellet
consists of a mixture of 5% neon and 95% deuterium, with 2 · 1024 particles shattered
into 1742 shards. A diffusive heat transport with δB/B = 0.001, constant in space
and time, is activated once the mixed neon-deuterium shards enter the plasma.
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5.2.2 Radiative vs transport losses
The comparison between the single-stage and two-stage injection in section 5.2.1
confirms one of the expected advantages of the two-stage injection scheme: that the
transport losses of thermal energy are significantly lower than for the single-stage
injection. In this section, we make a further study of the fraction of the thermal
energy lost by transport during two-stage injections with different numbers of injected
neon and deuterium particles.

For this analysis, we again use a deuterium pellet speed of 〈vp,D〉 = 800 m/s.
The number of shards the deuterium pellet is shattered into, for a given number of
injected particles, is chosen along the 97% assimilation contour of figure 5.1 a), when
possible. To illustrate the consequences of not achieving core penetration, we also
include simulations of smaller deuterium pellets which are fully ablated before they
reach the core regardless of the number of shards they are shattered into. For these
pellets, we chose Ns,D = 10. For the neon pellets, the relatively low temperature
of the diluted plasma when they are injected makes full assimilation difficult for
the larger pellets, as seen in figure 5.2. Moreover, it can be seen in figure 5.2 that
the increasing trend in the assimilation rate when increasing the number of shards
appears to slow down for shard numbers & 50. Therefore, we fix the number of neon
shards to Ns,Ne = 50.

Figure 5.5 shows the fraction of the initial thermal energy that is lost by transport
during a two stage injection as a function of the number of injected deuterium and
neon particles. Here we see that the transported fraction can be significantly
decreased by increasing the deuterium and neon content. The dependence on Ninj,Ne
is however weaker than the dependence on Ninj,D, primarily due to the decrease in
the assimilated fraction as Ninj,Ne increases. The neon content primarily increases the
radiative losses, which are further enhanced by the increase in the electron density
due to the deuterium injection, as may be anticipated from the second term in
equation (4.8). As discussed in section 5.2.1, the deuterium content also limits the
transport by lowering the temperature before the onset of the magnetic perturbation.
Again, we note that our model for the thermal energy transport is not detailed
enough to give reliable quantitative predictions, but figure 5.5 may still be indicative
of the trends regarding the reduction of the transported losses during a two-stage
deuterium-neon SPI. It is also noteworthy that simulated transported losses below
the limit of 10% of the initial thermal energy, marked by the dashed grey line in
figure 5.5, are achievable within a realistic range of injection parameters.

Finally, we note that lack of core penetration does not cause a dramatic difference
in the transported fraction. One reason for this is that the neon shards can reach
the core even if the deuterium shards did not. Another reason is that the thermal
energy in the core has to pass the outer regions of the plasma before it can be lost
due to transport, and can therefore be radiated away in the regions that have been
reached by the deuterium shards.
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Figure 5.5: Fraction of the thermal energy lost by transport due to the magnetic
field perturbations, as a function of the number of injected deuterium and neon
particles. The parameters for the injections were Ns,Ne = 50 for the neon shards,
and the number of deuterium shards was chosen along the 97% assimilation contour
in figure 5.1, when possible. This region is marked by the dotted grey line. To the
left of the grey line, the deuterium pellets were shattered into 10 shards. A diffusive
heat transport with δB/B = 0.001, constant in space and time, is activated once the
neon shards enter the plasma. A dashed grey line marks the target of a transported
fraction lower than 10%.

5.2.3 Hot-tail generation
We now turn to the other major expected advantage of the two-stage injection scheme
compared to single-stage injections, which is the reduction of the hot-tail generation
due to the intermediate equilibration of the electron momentum distribution. For
this analysis, the hot-tail generation is captured by invoking the kinetic equation
described in section 4.4.1. The fluid-like sources described in section 4.4.2 are still
turned off, in order to distinguish the hot-tail seed generation (the Dreicer mechanism
is also inherently accounted for by the kinetic equation in section 4.4.1, but gives
here only a negligible contribution). In our model, this seed generation is given by
the flux across the upper momentum boundary pRE of the kinetic grid, defined in
section 4.2. The total runaway current resulting from the hot-tail seeds found here is
studied later in section 5.3, including all runaway generation mechanisms described
in section 4.4.2.

As a reference case, we start by studying the hot-tail generation of the single-
stage injection studied previously in figure 5.4. The corresponding spatio-temporal
evolution of the runaway current density is shown in figure 5.6. We consider both
the case where the superthermal electrons (i.e. the hot and runaway population
defined in section 4.2) do not experience any radial transport (a) and where they
experience a Rechester-Rosenbluth diffusion coefficient similarly to the thermal
electrons (b). This allows us to distinguish the effect of radial transport of the
superthermal electrons due to the magnetic perturbation. We also note that the
radial transport of energetic electrons in the MeV-range might be lower than that
given by the Rechester-Rosenbluth coefficient [68], due to the effect of particle orbit
averaging over the fluctuation. Disabling the radial transport of the superthermal
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electrons may be seen as an upper estimate of the role of this phenomenon.
Without transport of the superthermal electrons, the hot-tail seed integrates to

1.15 MA. This value is around six orders of magnitude larger than the ∼ 1 A seed
expected from the tritium decay and Compton scattering during nuclear operation.
Despite the logarithmic dependence of the final runaway current on the seed found in
ref. [19], the hot-tail seed found here could therefore have a significant impact on the
final runaway current. Moreover, the hot-tail seed found here is almost twelve orders
of magnitude larger than the 1µA seed that was found in ref. [19] to be sufficient to
result in a final runaway current larger than 1 MA. Finally, the difference is even
larger compared to the seed calculated for the two-stage injection studied earlier in
figure 5.3. In this case, the hot-tail seed is practically suppressed, and is calculated
to be at most 1.1 · 10−12 A (still without transport of superthermal electrons)1.

Looking at the radial profile in figure 5.6 a), we see that the hot-tail seed is
strongly peaked at the center in this case. This is explained by the higher initial
temperature and current density in the core compared to the rest of the plasma.
The higher initial temperature increases the hot-tail generation by extending the
tail of the initial momentum distribution. The effect of the higher current density is
that it increases the local induced electric field during the disruption. We also see in
figure 5.4 d) that the plateau-like phase of the temperature evolution directly after
the injection persists for a shorter time in the core, which further favours hot-tail
generation there, compared to the rest of the plasma.

When the transport of superthermals is included, we see in figure 5.6 b) that the
runaway electrons are smeared out over a much wider part of the plasma. The total
hot-tail seed is also significantly reduced. As the runaway electrons are transported
out of the plasma as long as the magnetic field remains stochastic, the effective
surviving magnitude of the hot-tail seed is dependent on the time it takes for the
flux surfaces to re-heal. The maximum value of the total hot-tail seed is 43.6 kA,
but after the maximum is passed it decays exponentially on a ∼ 0.1 ms time scale.
However, the inverse avalanche growth rate, which determines the avalanche e-folding
time scale, is also of the order of 0.1-1 ms during a disruption in an ITER-like plasma
[20]. Thus, the seed electrons might have time to contribute to a few e-folds before
they are lost.

1Such a small seed might be significantly affected by the numerical “leakage” of particles into
the runaway population, which may occur when the upper momentum boundary pRE is lower than
the critical momentum for runaway acceleration. The calculated hot-tail seed should therefore be
considered an upper estimate.
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Figure 5.6: Hot-tail runaway seed current evolution for the single-stage injection
studied in figure 5.4, with pellets consisting of 5% neon and 95% deuterium, with
2 · 1024 particles, shattered into 1742 shards. The panels show results without
transport of superthermals (a) and with transport of superthermals (b).

We now make a further study of the hot-tail seed generation for two-stage
injections when varying the number of injected particles, using the same cases as in
figure 5.5 (i.e. with 〈vp,D〉 = 800 m/s). As the purpose of this study is to compare the
hot-tail generation between a single and a two-stage injection, we consider the simpler
case without transport of superthermal electrons. Such a conservative case can be
regarded as an upper limit of the hot-tail seed, the consideration of which is further
motivated by the lack of detailed knowledge about the transport of superthermals.
The resulting total hot-tail seeds are shown in figure 5.7 a). We note immediately
that when core penetration with the deuterium injection is achieved, the seeds are
several orders of magnitude smaller than those found for the single-stage injection
discussed above. As expected, increasing the neon content strongly increases the
hot-tail generation due to the resulting decrease in the thermal quench time. On
the other hand, the general trend observed is that increasing the deuterium content,
and hence the dilution following the first injection, can effectively reduce the hot-tail
seed by several orders of magnitude.

Important to note, however, is that whether or not core penetration with the
deuterium injection is achieved can alter the hot-tail seed by several orders of
magnitude. When core penetration is not achieved, the core is rapidly cooled by
neon radiation and transport, all the way from the initial temperature down to a few
eV, without an intermediate tail equilibration. The situation in the core is therefore
similar to the single-stage injection investigated in figure 5.6.

The radial profiles of the hot-tail seed for four values of Ninj,D, each with Ninj,Ne =
1024, are shown in figure 5.7 b). When core penetration with the deuterium injection
is not achieved (solid black curve), the profile peaks in the core, similarly to the
single-stage case shown in figure 5.6 a). In contrast, the cases with larger deuterium
pellets have their maxima close to the edge. As seen in figure 5.1, the temperature
profiles following the deuterium injection for such cases are rather flat compared
to the initial temperature profile, which lowers the relative efficiency of the hot-
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tail generation in the core. Furthermore, the lower density, and hence the lower
collisionality, makes the hot-tail generation at the edge relatively more efficient.
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Figure 5.7: Maximum total hot-tail runaway seed as a function of the number of
injected deuterium and neon particles (a) and the corresponding radial profiles of
the hot-tail seed for Ninj,Ne = 1024 and varying Ninj,D (b). The parameters for the
injections were Ns,Ne = 50 for the neon shards, and the number of deuterium shards
was chosen along the 97% assimilation contour in figure 5.1, when possible. This
region is marked by the dotted grey line. To the left of the grey line, the deuterium
pellets were shattered into 10 shards. A diffusive heat transport with δB/B = 0.001,
constant in space and time, is activated once the neon shards enter the plasma.

5.3 Current quench simulations
We now turn our attention to the later stages of the disruptions and study the decay
of the Ohmic current, as well as the remaining runaway generation and dissipation.
These stages correspond to the green and blue shaded areas in figure 3.2. Scans are
made over the same ranges of injection parameters used above in section 5.2.3 and
5.2.2 to study the hot-tail generation and transported thermal energy losses. At this
stage, the thermal energy is almost completely dissipated, and the now low plasma
temperature evolves slowly as the Ohmic heating varies during the current decay.
When the rapid plasma cooling is complete, the stochastic flux surfaces re-heal,
which we account for by switching of the transport due to magnetic perturbations
at t = 16.4 ms. The hot-tail mechanism is also no longer active, and therefore
our analysis can be done without resolving the kinetic distribution of the electrons.
Instead, we now include the fluid-like sources described in section 4.4.2, adding
further runaways to those resulting from the hot-tail seed calculated in section 5.2.3.

We consider separately the case where the tritium decay and Compton scattering
seed mechanisms are active, corresponding to the nuclear operation phase, and the
case without nuclear activity where these mechanisms are absent. The tritium decay
and Compton scattering mechanisms generate a seed of the order of 0.1-1 A rather
independently of the injection parameters, as discussed in section 3.3. Although
seemingly small, these seeds may be multiplied by the avalanche mechanism to a
final runaway current of several MA, as we will see shortly.
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During the current quench, when the plasma is relatively cold, the radiation
transport properties of the plasma might have an important impact on the runaway
generation. In particular, a preliminary estimate of opacity to Lyman radiation was
presented in ref. [19], indicating that this effect could lower the runaway currents by up
to several MA for large injected deuterium densities. Not only does the opacity impact
the radiative losses, but it also affects the ionization and recombination rates (Iij
and Rij in equation (4.8)) [69]. While the plasma is essentially transparent at most
wavelengths, the opacity is significantly increased at the wavelength corresponding
to resonant transitions [70]. This applies particularly to those transitions involving
the ground state; as this is the state occupied by most ions and atoms, there are
more atoms that can reabsorb a large fraction of the radiation at this wavelength.

The estimate shown in appendix B indicates that the plasma might only be
transparent to a few percent of the Lyman radiation where the excited states are
populated by excitations starting from the ground state, which primarily populates
the lower excited states. This would have a significant impact on the contribution
from the hydrogen isotopes to the radiation rate Lij defined in section 4.2. On
the other hand, the plasma is estimated to be transparent to the majority of the
ionization/recombination radiation. A substantial part of this radiation consists of
a continuum spectrum resulting from free-bound transitions, together with higher
order Lyman lines resulting from the de-excitation of the high excited states thus
populated. For such radiation, the plasma is largely transparent.

Moreover, it was indicated in ref. [71] that opacity to neon radiation is not
expected to have a strong impact on disruption dynamics. We therefore consider
the limiting cases where the plasma is assumed to be completely transparent or
completely opaque to Lyman radiation, whilst being completely transparent to
radiation from species other than hydrogen. For the completely transparent case,
the radiation and ionization/recombination rates are taken from the ADAS database
for all species as described in section 4.2. When the plasma is assumed to be opaque
to Lyman radiation, the radiation and ionization/recombination rates for hydrogen
species are instead taken from the AMJUEL database2.

Figures 5.8 a-b) show the calculated runaway currents just preceding the runaway
dissipation phase (corresponding to the boundary between the green and blue shaded
areas in figure 3.2) for the different scenarios discussed above. This runaway current
indicates the maximum runaway current that might strike the wall, depending on
how far into the dissipation phase the plasma control is retained. The thin lines
show the non-nuclear case, which is free from tritium decay and Compton scattering,
while the thick lines show results for the nuclear case, i.e. with the tritium decay and
Compton scattering seed mechanisms included. Panels c-d) show the corresponding
Ohmic current quench times, defined as

tCQ =
t(IOhm = 0.2I(t=0)

p )− t(IOhm = 0.8I(t=0)
p )

0.6 . (5.1)

In panel a) and c), the plasma is assumed to be completely transparent, and in b)
and d) the plasma is assumed to be completely opaque to Lyman radiation.

2http://www.eirene.de
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Figure 5.8: Maximum runaway current (a-b) and current quench time (c-d) as
functions of the number of injected deuterium and neon particles. The thick lines
show the result for nuclear cases, with runaway generation by tritium decay and
Compton scattering present. The thin lines show the result for non-nuclear cases,
which are free from tritium decay and Compton scattering. In panel a) and c), the
plasma was assumed to be completely transparent, while the plasma was assumed to
be opaque to the Lyman lines in panels b) and d). The parameters for the injections
were Ns,Ne = 50 for the neon shards, and the number of deuterium shards was chosen
along the 97% assimilation contour in figure 5.1, when possible. This region is
marked by the dotted grey line. To the left of the grey line, the deuterium pellets
were shattered into 10 shards. The magnitude of the magnetic perturbation was
assumed to be δB/B = 0.001, activated once the neon shards enter the plasma, and
switched off at t = 16.4 ms, when the rapid plasma cooling is complete.

A general trend seen in figure 5.8 a-b) is that the runaway currents are small
or even negligible for the lowest considered Ninj,D and Ninj,Ne, which do not give
core penetration with the deuterium injection. However, for these cases the current
quench times (above the axis in panels c-d)) are very long. The exact current quench
times were not determined, as the simulations were stopped after 150 ms, but the
decay rates indicate a time scale of the order of seconds. As Ninj,D increases, the black
curves in panels a-b), which initially indicated low runaway currents, first increases
rapidly, before the increase either slows down significantly or turns to a decrease.
Simultaneously, the current quench times in panels c-d) make a jump towards shorter
times, and then decrease only slowly with increasing deuterium content.
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The reason for the initial jump is that, for low deuterium densities, the radiative
cooling is not strong enough to overcome the ohmic heating. This leads to a re-
heating of the plasma from the 10 eV range to a few hundred eV, as the transport
losses are no longer active. As the conductivity scales as T 3/2

M (see equation (4.9)),
the re-heating greatly increases the conductivity, leading to a major reduction of the
current decay rate. The increase in conductivity also reduces the induced electric
field, and hence reduces the runaway generation. It should however be noted that
the current quench times for these cases are much longer than the upper limit of 150
ms discussed in section 3.2.

For the rest of the parameter space, the current quench times are in the vicinity
of the lower acceptable limit of 35 ms. Note, however, that in cases with a large
runaway conversion, the runaway current aborts the current quench rather abruptly.
The Ohmic current quench time calculated here is therefore a lower estimate of the
current quench time relevant for the assessment of the electromagnetic loads due to
eddy currents.

Another general trend seen in figure 5.8 is that at intermediate deuterium densities
and high neon densities, the runaway currents decrease with increasing Ninj,D. At the
post-thermal quench temperatures of a few eV, the neon atoms are not fully ionized,
while the deuterium ions remain practically fully ionized until the temperature drops
below about 2 eV. Adding more deuterium therefore decreases the fraction of bound
electrons. The presence of bound electrons results in a net enhancement of the
avalanche, as discussed earlier in section 3.3, and therefore a reduced fraction of
bound electrons reduces the runaway generation.

As the Ohmic current decays the Ohmic heating decreases, and eventually the
temperature falls below 2 eV so that the deuterium starts to recombine. At high
deuterium densities, the increased radiative losses can cause this to happen while there
is still a substantial part of the Ohmic current left that can be converted to a runaway
current. When the deuterium recombines, the fraction of bound electrons increases
and enhances the avalanche. This is the reason behind the increase in the runaway
current at high deuterium densities in figure 5.8 a). How much current remains when
the deuterium starts to recombine is however dependent on the radiation transport
properties of the plasma. When the deuterium starts to recombine, it also starts to
contribute significantly to the radiation, and therefore opacity to Lyman radiation
considerably reduces the radiative losses. This reduction in the radiative losses means
that the Ohmic current must be smaller for the deuterium to recombine, explaining
the lower maximum runaway currents at high deuterium densities in figure 5.8 b).
The effect of the radiative properties of the plasma are discussed in more detail later
in this section.

Finally, we see a clear difference when runaway seed generation from tritium decay
and Compton scattering is included, compared to when it is not. The differing factor
is however far from the several orders of magnitude difference between the 0.1-1 A seed
produced by the tritium decay and Compton scattering and the hot-tail seeds shown
in figure 5.7. This is due to the logarithmic dependence of the maximum runaway
current on the seed found in ref. [19], which was also discussed in section 5.2.3. This
weak dependence is explained by the self-regulating interaction between the runaway
current and the electric field; when the runaway current becomes comparable to the
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case Ninj,D Ninj,Ne
1 0.5 · 1024 1025

2 0.3 · 1024 1022

3 2 · 1024 1024

4 1 · 1024 1022

Table 5.1: Representative cases used to illustrate the four qualitatively different
regions found in the Ninj,D −Ninj,Ne-space.

remaining Ohmic current, the induced electric field is reduced, which reduces the
avalanche growth rate. Notably, however, despite this weak dependence, we see a
significant difference between the nuclear and non-nuclear cases. In the non-nuclear
cases, we found maximum runaway currents lower than the critical 2 MA limit
discussed in section 3.2, which also had acceptable current quench times. In the
nuclear cases, on the other hand, no such cases were found. The implications of
these findings are discussed later in chapter 6.

5.3.1 Current quench and runaway dynamics
For the remainder of the analysis in this section, we identify four qualitatively
different regions of the parameter space: (1) a region with high injected neon density,
with strong runaway generation, where the runaway current decreases with increasing
deuterium density; (2) a region at low injected neon and deuterium densities, where
core penetration is not achieved with the deuterium injection, giving low runaway
generation, but current quench times exceeding the limit; (3) a region at high injected
deuterium densities with strong runaway generation, that increases with increasing
deuterium density; (4) a region intermediate between (1) and (3) where the runaway
current has its minimum in the part of parameter space with acceptable current
quench times. These four regions are similar to the ones found with the fluid model
GO used in ref. [19], when scanning over prescribed neon and deuterium densities
with a flat profile. In this section, we illustrate these regions by detailing one
representative case from each, given in table 5.1. This is done for the simulations
assuming a completely transparent plasma, because the features of interest are more
clearly pronounced with this assumption. It should however be noted that the
estimates in appendix B indicate that the more optimistic results obtained assuming
complete opacity to Lyman radiation might be closer to reality.

The time evolution of the most relevant plasma parameters for case 1 are shown
in figure 5.9. Panels a), b) and c) show the temperature, electric field, and runaway
current density during the final phase of the runaway generation. The temperature
stabilises at a few eV, with a rather flat profile in most of the plasma, with a peak in
the centre. The induced electric field is of the order of a few tens of V/m, and the
current quench time is a few tens of milliseconds. After about 25 ms, the Ohmic
current is completely dissipated and replaced by a runaway current of 5.2 MA, as
shown in panel d). The profile of the runaway current has its peak about 80 cm
outside the core, coinciding with the peak of the deuterium and neon density profiles.
The subsequent dissipation of the runaway current is rather slow for the relatively
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modest electron density prevailing in this case.

0 0.5 1 1.5 20

2

4

6

8

r [m]

T
M

[eV
]

t = 21 ms
22 ms
23 ms
24 ms

a)

0 0.5 1 1.5 20

20

40

60

80

100

r [m]
E
||
[V

/m
]

b)

0 0.5 1 1.5 20

0.5

1

1.5

r [m]

j R
E
[M

A
/m

2 ]

c)

0 50 100 1500

5

10

15

t [ms]

I
[A

]

Total
Runaway

d)

Figure 5.9: Spatio-temporal evolution of a) temperature, b) electric field and c)
runaway current density for case 1, defined in table 5.1, during the final part of the
runaway generation phase. The times indicated are those elapsed since the start of
the first deuterium injection. d) shows the time evolution of the total (black solid)
and runaway (green dashed) current.

The time evolution of the temperature, electric field and runaway current for cases
2-4 are shown in figure 5.10. For case 2, shown in panels a), d) and g), we clearly
see a re-heating approaching 200 eV. In the regions where the plasma is re-heated,
the electric field is relatively low, and the runaway generation is negligible in all
parts of the plasma. The resulting evolution of the total Ohmic current, shown in
figure 5.11 a), shows an initial relatively fast drop when the current in the outer part
of the plasma (that is not re-heated) dissipates. After that, the remaining current
dissipates at a very slow rate, with a current quench time of the order of seconds.
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Figure 5.10: Time evolution of the temperature (a,b and c), electric field (d,e and
f) and runaway current density (g,h and j) for the representative cases 2-4 of the
Ninj,D −Ninj,Ne parameter space, defined in table 5.1. The times indicated are those
elapsed since the start of the first deuterium injection. Left column shows case 2,
middle column case 3, and right column case 4.
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Figure 5.11: a) Time evolution of the total plasma current (black) and runaway
current (blue) for case 2 (solid), case 3 (dash-dotted) and case 4 (dashed) defined in
table 5.1. b) initial current profile (black solid) and final runaway current profiles for
case 3 (dash-dotted) and case 4 (dashed).

In case 3, shown in figure 5.10 b), e) and h), the temperature drops close to 1
eV over most of the plasma while there is still a substantial Ohmic current. The
deuterium starts to recombine, and the local electric field initially increases and is
then dissipated over a relatively short time scale of a few milliseconds. In the time
between the recombination of the deuterium and the decay of the electric field, the
local avalanche generation is very strong. This results in a large runaway current
of 7.8 MA, with profile peaking in the outer region where the temperature first
drops to 1 eV. The relatively high injected deuterium and neon densities result in a
comparatively fast decay of the runaway current in case 3, as seen in figure 5.11 a),
and the runaway current eventually striking the wall is therefore somewhat dependent
on how long the plasma position can be controlled.

Finally, case 4, shown in figure 5.10 c), f) and i), can be seen as an intermediate
case between case 1 and 3. The deuterium density is high enough to reduce the
enhancement of the avalanche by the bound electrons in the neon ions, but not so
high as to cool the plasma to the temperature where deuterium recombines, before
the runaway generation phase is close to finished. The resulting runaway current
is 3.9 MA, which is the lowest runaway current found for a completely transparent
plasma in the region of parameter space with potentially acceptable current quench
times. The decay rate of the runaway current however is quite modest compared to
case 3. The injection parameters resulting in the smallest runaway current striking
the wall is therefore somewhat dependent on the time during which the plasma
position remains stable. It should be noted, however, that a faster current decay
makes it harder to maintain control of the plasma position [26]. As a result, the
plasma may strike the wall at an earlier stage, which reduces the impact of the
deposition, and favours the case with the lowest maximum runaway current.

5.3.2 Qualitative interpretation based on energy balance
The differences in the dynamics between the four cases above are primarily caused
by differences in the balance between Ohmic heating and radiative losses during
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the current quench. This balance can be qualitatively understood by comparing
Ohmic heating to radiative losses at different temperatures, assuming an equilibrium
distribution of charge states (which may be calculated using equation (4.7)). Such a
comparison is shown in figure 5.12 for the above four cases, considering the volume
averaged final deuterium and neon densities. The solid black line shows the radiative
losses assuming a completely transparent plasma, calculated by the second term on
the right hand side of equation (4.8). The green dashed line shows the corresponding
radiative losses when the plasma is assumed to be opaque to Lyman radiation.
The Ohmic heating is calculated using the first term on the right hand side of
equation (4.8), for two different current densities: 5 MA/m2 (blue dashed), taken as
a representative value for the maximum current density at the radial peak, similar
to that seen in figure 5.3 f), and 0.5 MA/m2 (blue dotted), representing the phase
where the Ohmic current has partially, but not completely, decayed.

In case 1, the only equilibrium temperature (i.e. where the heating and losses
balance each other) is of the order of a few eV for both considered Ohmic current
densities. The plasma will therefore equilibrate at a temperature in this range
throughout the current quench. At these temperatures, the hydrogen isotopes remain
fully ionized. However, the comparatively large number of bound electrons in the
neon ions enhances the avalanche, making the maximum runaway current relatively
large.

In case 2 on the other hand, there is another equilibrium at about 200 eV for
jOhm = 5 MA/m2, in addition to the one at about 10 eV. Depending on the plasma
parameters, when the magnetic perturbation is turned off, parts of the plasma may
therefore equilibrate at about 200 eV. As there is also an equilibrium in the few eV
range, the regions with a lower Ohmic heating will equilibrate at such a temperature.
In those regions, the local current density will decay at a similar rate as in case 1,
resulting in the initial current drop in figure 5.11. However, in the parts evolving
towards the ∼ 200 eV equilibrium, the conductivity remains comparatively large,
leading to a slow current decay, low electric fields and weak runaway generation.

In case 3, the large deuterium density increases the radiative losses at lower
temperatures, especially below ∼ 2 eV, where a substantial fraction of the deuterium
recombines. When this happens, the deuterium starts to contribute directly to the
radiation rather than just increasing the electron density. For jOhm = 0.5 MA/m2,
and a transparent plasma, the equilibrium temperature is now close to 1 eV, where
the ionized fraction of the deuterium is only a few percent. This results in an
enhancement of the avalanche, and the low temperature also favours larger induced
electric fields, albeit with a faster local decay rate. Moreover, note that although
the Ohmic current density is somewhat modest in the ∼ 1 eV regions, the local
conversion from Ohmic to runaway current is not limited by the local Ohmic current
density. The current from other parts of the plasma can diffuse into the cold regions,
potentially causing a local increase in the current density. Altogether, these effects
give rise to the increase in the maximum runaway current at large deuterium densities
seen in figure 5.8.

If the plasma is assumed to be opaque to Lyman radiation, however, the radiative
losses at low temperatures are considerably reduced. This is particularly true for the
line radiation following excitations from the ground state. The remaining increase in
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the radiative losses below ∼ 2 eV is instead primarily due to ionization/recombination
radiation of hydrogen species. The drop to ∼ 1 eV is now postponed until the Ohmic
current has decreased further than in the transparent case. Although the Lyman
opaque case is not qualitatively different to the transparent one, the postponed
temperature drop to∼ 1 eV reduces the maximum runaway current at large deuterium
densities, and shifts the increasing trend to higher deuterium densities.

Finally, case 4 can be regarded as a compromise between the features characteristic
of the other cases. On the one hand, the amount of deuterium and neon is large
enough to avoid the re-heating seen in case 2 and to avoid the enhancement of the
avalanche by electrons bound to neon ions seen in case 1. On the other hand, it is
not large enough to cause a final temperature drop to ∼ 1 eV before the remaining
Ohmic current has fallen. As a result, the current quench time is comparable to the
lower limit of 35 ms, and the maximum runaway current is relatively modest.

100 101 102 10310−1

100

101

102

103

104

TM [eV]

P
[M

W
/m

3 ]

a)

100 101 102 10310−1

100

101

102

103

104

TM [eV]

P
[M

W
/m

3 ]
b)

100 101 102 10310−1

100

101

102

103

104

TM [eV]

P
[M

W
/m

3 ]

c)

100 101 102 10310−1

100

101

102

103

104

TM [eV]

P
[M

W
/m

3 ]

d)

Figure 5.12: Radiative power loss as a function of temperature, for a transparent
plasma (solid black) and for a plasma opaque to Lyman radiation (dash-dotted
green), compared to the Ohmic heating calculated for jOhm = 5 MA/m2 (dashed
blue) and jOhm = 0.5 MA/m2 (dotted blue). The panels show case 1 (a), case 2
(b), case 3 (c) and case 4 (d), defined in table 5.1, using the volume averaged final
deuterium and neon densities and an equilibrium distribution of charge states.
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6
Concluding remarks

Disruptions are a severe threat to the future of fusion energy based on the tokamak
design. A reliable disruption mitigation system is of utmost importance for the
success of future large, high-current devices such as ITER. To this end, ITER plans
for a disruption mitigation system based on Shattered Pellet Injections (SPI). In
this work, we have undertaken numerical simulations to assess the performance of
the most up to date SPI schemes, covering a wide range of injection parameters.
The numerical simulations were performed with the DREAM (Disruption Runaway
Electron Avoidance Model) code, which was extended within this work with an SPI
model based on the Neutral Gas Shielding (NGS) model for pellet ablation.

Our assessment of the performance of the disruption mitigation system concerns
three of the main issues related to disruptions: mitigation of the localised heat loads
and electromagnetic forces on the vessel, and the reduction of the runaway current
generation. The mitigation of the localised heat loads is achieved by isotropically
dissipating the thermal energy content through radiation. The performance in this
regard was quantified by the fraction of the initial thermal energy content conducted
to the wall rather than radiated. The aim is a transported fraction lower than 10%.
To avoid excessive electromagnetic forces, the current quench time must be long
enough to sufficiently reduce the eddy currents induced in the structures surrounding
the plasma, but short enough to avoid excessive halo currents. For ITER, the allowed
range for the current quench time is therefore between 35 and 150 ms. The current
quench time scale is essentially determined by the post-thermal quench temperature,
which is, in turn, determined by the radiation losses and Ohmic heating. Finally,
the runaway current impacting the wall should be lower than 2 MA. Given any
initial runaway seed current, the main source of runaway generation is the avalanche
mechanism. This is sensitive to the electric field and distribution of ionization stages
during the current quench, with a high electric field and a large fraction of bound
electrons giving a high avalanche generation.

6.1 Summary of results

Our results effectively address the three main requirements of the disruption miti-
gation system mentioned above. This was done through simulations of a two-stage
SPI scheme, starting with dilution cooling by a deuterium injection followed by a
radiatively cooling neon injection. We found that such an injection scheme signifi-
cantly impedes the thermal energy transport due to magnetic perturbations, which
can reduce localised heat loads. This is explained by the decrease in the thermal
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motion due to the dilution cooling in the first stage, before the stochastisation of the
magnetic field, which reduces the cross-field transport along the stochastic magnetic
field lines.

If the injected neon and deuterium densities are too low, the current quench time
becomes longer than the upper limit for avoiding unacceptable halo currents. The
reason for this was the resulting incomplete cooling of the plasma, and the associated
high conductivity in the parts of the plasma remaining at a comparatively high
temperature. For large injected densities, however, the simulated current quench
times were found to be close to the lower acceptable limit, with a rather weak
dependence on the injected densities.

Another major concern related to the rapid cooling in disruptions has been the
potential generation of a strong hot-tail seed. We found that the above mentioned
two-stage SPI scheme can effectively reduce the hot-tail runaway seed generation by
several orders of magnitude, enabling a final runaway current below the acceptable
limit of 2 MA in the absence of other significant seed mechanisms. This reduction
can be explained by the intermediate equilibration of the hot tail of the electron
momentum distribution between the injections. Notably, this strong reduction was
obtained despite the conservative assumption that the superthermal electrons were
not affected by the magnetic field perturbations.

For the final runaway current, a non-monotonic dependence on the injected
deuterium density was found. At low deuterium densities, an increased deuterium
density was found to reduce the avalanche, while at large deuterium densities, the
avalanche was found to be enhanced by the higher electric fields and substantial
recombination, resulting from the strong radiative cooling. The increase in the
runaway current for large deuterium densities favours an intermediate deuterium
injection of about 1 − 2 · 1024 atoms, depending on the opacity of the plasma to
Lyman radiation. This sets an upper limit on the dilution cooling that may be
employed. Our results indicate, however, that the deuterium injections giving the
minimum runaway current, followed by a neon injection in the range of 1022 − 1024

atoms, gives current quench times and transported fractions of the thermal energy
within, or at least in the vicinity of, the acceptable ranges.

For the non-nuclear cases, these parameters were also found to give peak runaway
currents lower than the acceptable limit of 2 MA, especially when assuming the
plasma to be opaque to Lyman radiation. For the nuclear cases, on the other
hand, no such scenarios were found, which is quite alarming for the nuclear phase
of the ITER operation. It should however be noted that the lowest calculated
peak runaway currents of around 4 MA, again somewhat dependent on the opacity
properties of the plasma, are of the same order of magnitude as the acceptable
limit of 2 MA. The runaway current remaining upon wall impact might also be
lower than the peak runaway current evaluated here due to dissipation, depending
on how long the plasma position remains stable. The dissipation might also be
significantly affected by the presence of magnetic perturbations remaining during
the current quench and runaway dissipation phase, which was not considered in
this work. The remaining necessary reduction of the runaway current might be
further accomplished by involving additional mitigation techniques, such as runaway
dissipation by deliberately applied plasma perturbations during the current quench
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and runaway dissipation phase.

6.2 Outlook
Although the simulations performed in this work are based on ITER-like parameters,
the qualitative features of the results might be of interest for the design of disruption
mitigation systems at other devices such as e.g. SPARC. One of the main advantages
of a two-stage SPI scheme found in this work is the efficient suppression of the
hot-tail generation. Previous studies modeling runaway generation in the SPARC
tokamak indicated that the presence of a hot-tail seed can lead to several MAs of
runaway currents [9], while the runaway generation in the absence of a hot-tail seed,
but otherwise similar conditions, is of the order of 0.1 MA [35]. For this reason, a
disruption mitigation scheme which effectively suppresses the hot-tail generation
might be of interest for SPARC, motivating similar studies to those performed in
this work with SPARC-like parameters.

The benefits of a two-stage SPI scheme indicated by our results also motivate
more quantitatively accurate studies, with a more rigorous treatment of the most
simplified aspects of the present model. While the model used in this work comprises
an integrated framework accounting for many of the relevant aspects of disruption
mitigation by SPI, the various aspects are treated with different levels of sophistication.
The evolution of the current and momentum distribution of the electrons are treated
rigorously in the present model. On the other hand, some aspects of the transport
properties of the thermal energy and plasma ions, as well as the evolution of the
pellet material, are treated in a simplified manner.

The SPI model used in this work contains a number of simplifications. One
such simplification is the use of the NGS ablation model, which is based on a
simplified spherical pellet shard geometry. In addition, it neglects the details of the
ablating electron momentum distribution, as well as the electrostatic and diamagnetic
shielding described in section 3.5.1. Nevertheless, the NGS model has been shown to
compare reasonably well with experiments, and the effect of the above simplifications
have been estimated in the literature to counteract each other [43]. Therefore, while
a more advanced ablation model could result in an order unity correction to the
deposition profile, the discrepancy compared to the NGS model is expected to be
quite modest.

A larger correction might be caused by the details of the expansion process of the
pellet material between the ablation and final deposition. In the present model, this
process has simply been assumed to be instantaneous and local at the flux surfaces.
In reality, however, the homogenisation and equilibration process takes of the order
of 1 ms, as discussed in section 3.5.2. This time scale is similar to the time it takes
the plume of shards to pass a given flux surface, and can therefore be important
to account for. The process also covers several flux surfaces, as the newly ablated
material is subject to an E ×B-drift towards the low field side.

Apart from the direct impact on the timing and position of the density increase,
the features of the expansion process might significantly alter the ablation. For
pellets with a significant impact on the plasma temperature, the interaction between
the plasma and the pellet material is self-regulating; when the pellet material is
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ablated, the plasma is cooled, at first primarily by dilution, resulting in a slowing
down of the ablation. The finite expansion time and drifts reduce this self-regulation
by delaying the plasma response, and shifting it away from the position of the shards.
The ablation would thus be faster, so that more material is deposited earlier along
the shard trajectories.

The impact of the self-regulation is estimated in appendix C, by introducing an
artificial shift in the deposition kernel H(r, ρp,k) in equation (4.3). These estimates
indicate that the self-regulation substantially affects the final density profile. However,
a finite expansion time means that the thermal energy absorbed in the ablation
cloud surrounding the shards is not immediately returned to the background plasma.
Depending on the size of the ablation cloud, this heat absorption might compensate
for the reduced dilution cooling at the position of the pellet shards. In such a case,
it is estimated in appendix C that the final density profile might be rather similar to
that obtained with the model used in this work, which neglects the finite expansion
time and drifts. A quantitatively accurate model would however have to account for
the features of the expansion process self-consistently.

A second area of simplification employed in the present work concerns the geome-
try and interaction with the structures surrounding the plasma. The geometrical
simplifications include the circular plasma cross section, neglect of the toroidicity and
the assumption of flux surface homogenised quantities. Relaxing these assumptions
would allow for modelling of transient 3D features of the plasma profiles, as well as
introducing geometrical order unity corrections to the transport processes involved.
For instance, elongating the plasma increases the cross sectional area. This leads to
an increase of the time scale for diffusive transport across the plasma cross section,
and also decreases the density for a given number of deposited particles. Regarding
the surrounding structures, their geometry and conductive properties introduce
corrections to the electric field boundary condition. Support for a shaped geometry
(although still with constant plasma parameters over the flux surfaces) and a finite
wall conductivity has recently been implemented in DREAM, and the sensitivity to
these features could therefore be studied in the future.

Finally, another simplification in the present model is the prescribed evolution of
the magnetic perturbations. The prescribed magnetic perturbation is sufficient to
study qualitative trends involving transport due to magnetic perturbations, as done
in this work. However, self-consistent and quantitatively accurate simulations would
require coupling to a magnetohydrodynamic (MHD) model, such as JOREK [24], for
the evolution of the magnetic field. The evolution of the magnetic field through the
current quench might also be of interest, potentially including deliberately induced
perturbations to increase the runaway dissipation, as discussed above. Even the
comparatively smaller magnetic perturbations that may be present during the current
quench can have a relatively large impact on the runaway generation and dissipation
[72]. This applies especially for cases with an off-center runaway current profile,
as magnetic perturbations induced during the current quench are expected to only
partially penetrate into the plasma. However, it may apply also for core-centered
runaway current profiles given that the perturbations can cover a major part of the
plasma where the runaway current resides.

A major issue with the use of MHD models such as JOREK is the significant
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amount of computational resources required. A full scale 3D simulation of a thermal
quench with JOREK run on a large scale computing cluster takes of the order
of months to finish [73]. The thermal quench simulations shown in this work, on
the other hand, take at most a couple of days on a desktop, when invoking the
kinetic equation including transport of superthermal electrons. The run-times for
pure fluid simulations, ran through both the thermal and current quench, are no
longer than a couple of minutes. The orders of magnitude lower computational
expense substantially increases the feasibility of exploring a wide range of injection
parameters. Instead of attempting a full scale coupling of the evolution of the fluid,
kinetic and MHD properties of the plasma, a more feasible approach might be to
use the output of a full scale MHD model such as JOREK to design a simplified
MHD model. Such a model could then be efficiently integrated in a framework like
the one used in this work. If successful, such a model could significantly improve
the disruption modelling accuracy, as the coupling of the MHD, kinetic and fluid
properties of the plasma might be one of the main questions remaining in order
to make self-consistent, quantitatively accurate, predictions for the performance of
disruption mitigation systems.
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A
Discretisation of SPI deposition

kernels

The discretised delta source function, averaged over time step and grid cell, can be
expressed as

H(ri, ρp) = min (rf,i+1, ρp,max −max (rf,i, ρp,min))
V ′(ρp,max − ρp,min)∆ri

·

Θ(ρf,i+1 − ρp,min)Θ(ρp,max − ρf,i),
(A.1)

where ri and ∆ri are the discretised radial grid points and grid step size, ρp,max =
max (ρp(t) and ρp(t+ ∆t)), ρp,min = min (ρp(t), ρp(t+ ∆t)), Θ is the Heaviside step
function. The volume between two flux surfaces separated by an infinitesimal distance
dr is given by v′dr. In a cylindrical geometry, we have V ′ = ∂V/∂r = Aflt = 4π2Rr
with cylindrical geometry. The subscript f on r denotes the radial coordinate of the
cell faces, rf,i = ri −∆ri/2, rf,i+1 = ri + ∆ri/2.

Equation (A.1) may be understood as a box function over the radii passed during
the current time step, averaged over the discretised flux tubes. This expression is
however not applicable when the shard passes the point of closest approach to the
magnetic axis, where the radial coordinate varies non-monotonically along the shard
trajectory. The time step where the shard passes closest to the magnetic axis is
therefore divided into two parts, one part before and one part after passing the closest
approach to the center, and equation (A.1) is then used for these parts separately.
To see if the point of closest approach has been passed during the current time step,
we check whether the projection of the shard trajectory on the gradient of the radial
coordinate has changed sign, i.e. if

[xp(t) · ∇r(xp(t))] · [xp(t+ ∆t) · ∇r(xp(t+ ∆t))] < 0. (A.2)

The value for ρp at closest approach can then be found on the line between xp(t)
and xp(t+ ∆t) according to

ρp,closest = |xp(t) + δ[xp(t+ ∆t)− xp(t)]|, (A.3)

δ = xp(t) · [xp(t+ ∆t)− xp(t)]
|xp(t+ ∆t)− xp(t)|2 . (A.4)

The discretised Gaussian deposition kernel, integrated over the grid cells, can be
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A. Discretisation of SPI deposition kernels

expressed in terms of the error function, erf, according to

H(ri, ρp) = 1
2π2R(r2

f,i+1 − r2
f,i)

(
erf[(rf,i+1 − ρp)/rcld]− erf[(rf,i − ρp)/rcld]

2 +

erf[(−rf,i+1 − ρp)/rcld]− erf[(−rf,i − ρp)/rcld]
2

) (A.5)

The second term accounts for that the deposition profile crosses each flux tube twice,
once on each side of the magnetic axis. Note, that this expression is not averaged
over the time step, and is therefore only valid if the distance traveled during one
time step is small compared to the width rcld of the shielding cloud.

II



B
Opacity for deuterium radiation

Here we estimate how a large fraction of the line radiation from deuterium, due to
excitation and recombination, is expected to be trapped due to opacity of the plasma
in the vicinity of the Lyman lines, in a plane partially ionized plasma slab. We follow
the model described in ref. [70], which has also been used previously in ref. [71] to
study the effect of opacity to impurity radiation during mitigated disruptions. The
fraction of trapped radiation is determined mainly by two quantities: the optical
thickness of the plasma to the line radiation, and the rate of collisional quenching
of excited states. If the rate of collisional quenching is low, even an optically thick
plasma would be effectively transparent, as the absorbed photons would then likely
be re-emitted again rapidly, and so soon escape from the plasma.

The optical thickness of a plasma slab of thickness h is given by τ = kjzh, with kjz
being the inverse mean free path of the photon emitted by deexcitation from the jth

excited state to the ground state of a nucleus of charge z (transitions between excited
states are neglected). We will limit ourselves to the first nine excited states due to
availability of the necessary data. To further motivate this truncation, we verified
that including the ninth excited state only altered the results by the order of 1%
compared to only including the first eight excited states. If the natural broadening
of the line profile is γ and the net external broadening is Γ, the photon mean free
path is given by

kjz = nz(λjz)2

4π
1

1 + Γ/γ . (B.1)

Here, λjz is the wavelength of a photon emitted by deexcitation from the jth excited
state to the ground state of a nucleus of charge z. For a Doppler broadened line, we
have

Γ/γ = 1.11 · 1010E0j
z

√
mp

mi

Tiν
j
z , (B.2)

where mp is the proton mass, mi is the ion (or atom) mass, Ti is the ion temperature,
E0j
z is the energy difference between the ground state and the jth excited state of an

ion with charge z and νjz is the corresponding natural radiative decay rate. In this
section, all temperatures and energies are here given in eV, and transition rates are
given in s−1.

The effect of collisional quenching of excited states is determined by the ratio of
the collisional quenching probability and the radiative decay probability,

βjz = 2.7 · 10−13ne

(E0j
z )3
√
Te

[
1− E0j

z

Te
exp

(
E0j
z

Te

)
E1

(
E0j
z

Te

)]
, (B.3)
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B. Opacity for deuterium radiation

where E1(x) =
∫∞
x exp (−t)/tdt is the integral exponent. The fraction of radiation

escaping from a plane ion slab for a line emitted by deexcitation of the jth excited
state from a nucleus of charge z is then given by

Bj
z = 1

βjz + 1
W j
z (B.4)

where
W j
z = (1 + βjz)Pa

βjz + Pa
(B.5)

and
Pa = 1

1 + τ
√
π ln (τ + 1)

(B.6)

is the probability for a photon to travel a distance h without being absorbed (the “1”
in the denominator is included ad-hoc in the expression valid in the optically thick
limit, to make sure that Pa → 1 as it should for thin plasma slabs).

To find the fraction of the total radiation that escapes the plasma, we also need
to know the relative intensity of the different lines. The intensity distribution over
the different lines is very different for excited states populated by excitations from
lower states (dominantly the ground state) compared to excited states populated by
recombination. The reason for this is that excitations from lower states primarily
populate the lower excited states, while recombination populates higher excited
states to a substantially larger extents. In addition, part of the potential energy
change is radiated away during a free-bound transition, resulting in a continuous
spectrum to which the plasma is essentially transparent.

For radiation following excitation from lower states, we calculate the relative line
intensities based on data found in ref. [74], according to

Ljz ∝ E0j
z φ

j
z, (B.7)

where
φjz = rjzn̄Saha(j)νjz = rjz(j + 1)2 exp (Ej∞

z /Te)νjz (B.8)
is proportional to the relative occupation n̄Saha of the jth excited state at Saha
equilibrium, and Ej∞

z is the ionization energy from the jth excited state. The
coefficients rjz describe the deviation from the Saha equilibrium prevailing in a dense
enough plasma to reach local thermodynamic equilibrium. These coefficients are
tabulated in ref. [74], and the transition rates νjz are tabulated in ref. [75]. The
fraction of line radiation following excitations from the ground state escaping the
plasma can now be expressed as

fesc =
∑
z nz

∑
j B

j
zL

j
z∑

z nz
∑
j L

j
z

=
∑
j B

j
0E

0j
0 φ

j
0∑

j E
0j
0 φ

j
0
, (B.9)

where the second equality holds for hydrogen isotopes where there is only one
radiating charge state.

When the excited states are populated by recombination, energy will also be
radiated away during the free-bound transition populating the excited bound states,
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B. Opacity for deuterium radiation

in addition to the subsequent deexcitation through bound-bound transitions. We
consider two types of recombination events, one with transitions directly from a free
state to the bound ground state, and one consisting of a free-bound transition to
an excited bound state, followed by a direct transition to the ground state. If the
recombination is radiative, a transition from state j (which can be the ground state,
j = 0) will be preceded by a transition from the continuum to state j, while releasing
an average photon of energy Ej

z,rec ≈ E∞0
z + Te − E0j

z . The free-bound transitions
give rise to a continuus spectrum, to which the plasma is be essentially transparent.
The resulting escape factor for recombination radiation becomes

fesc =
∑
z nz

∑
j(Bj

zL
j
z + Ljz,rec)∑

z nz
∑
j(Ljz + Ljz,rec)

=
∑
j(Bj

0E
0j
0 + Ej

0,rec)φj0∑
j(E0 inf

0 + Te)φj0
. (B.10)

As the coefficients in ref. [74] only apply to recombination events involving an excited
bound state, we replace φj0 in equation (B.10) with the transition rates from ref. [76],
which also include radiative recombination directly to the ground state.

The escape factor as a function of the slab thickness h is shown in figure B.1, for
h up to the minor radius a = 2 m of an ITER-like plasma. Results are shown for
both radiation following excitations from the ground state, calculated using equation
(B.9), and for recombination radiation, calculated using equation (B.10). The plasma
parameters considered are an electron density ne = 1020 m−3, neutral deuterium
density nD = 4 · 1021 m−3, and temperature Te = 1.38 eV. These plasma parameters
are chosen to match the ones for which there are tabulated data in ref. [74], and to be
representative for case 3 described in section 5.3). One can see that the line radiation
following excitations from the ground state have an escape factor of not more than a
few percent, unless the slab thickness is very small. For the recombination radiation,
on the other hand, the escaping fraction is of the order of tens of percent even for
rather thick plasma slabs.

These results have several limitations that makes them rather uncertain. They
neglected transitions between excited states (to which the plasma would be essentially
transparent), and other broadening mechanisms than doppler broadening, both of
which would increase the escape factor. On the other hand, including three-body
recombination would decrease the escape factor compared to the purely radiative
recombinations considered here. If three-body recombination is significant, part
of Ej

z,rec will be absorbed by a second free electron in some of the transitions,
which lowers the escape factor. Expressions for the various contributions to the
recombination rate found in ref. [70] suggest that three-body recombination and
radiative recombination can be comparable at the conditions of interest. Effects of
geometry and non-homogeneous plasma profiles are also neglected, as are effects
of charge exchange that could also be important according to [70]. For sufficiently
large injections, the increase in the free electron density could also be enough to
make opacity effects important for neon impurities, depending on how substantial
recombination is obtained. Despite these limitations, however, one can conclude
that the escape factor is likely to be not more than a few percent for line radiation
following excitations from the ground state, but tens of percent for recombination
radiation.
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Figure B.1: Escaping fraction of deuterium radiation as a function of slab thickness,
for a plasma with electron density ne = 1020 m−3, neutral deuterium density nD =
4 · 1021 m−3, and temperature Te = 1.38 eV. The curves show the escaping fraction
for radiation following excitation from the ground state (black solid), calculated
by equation (B.9), and for recombination radiation (dotted red), calculated with
equation (B.10).
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C
Impact of the deposition process

features

Once the pellet material is ablated, it starts a homogenisation and equilibration
process over the flux surfaces. This process is governed by the pressure gradient
along the field lines, the magnetic shear and the shear caused by the pellet-induced
poloidal rotation, as discussed in section 3.5.2. The time scale for this process is
about 1 ms, which is comparable to the time between the arrival of the first and
last pellet shards at a given flux surface. Therefore, the finite time scale of the
expansion process might have a significant effect on the SPI dynamics. Moreover,
during this process, the pellet material is also subject to an E ×B-drift causing it
to drift towards the low field side. Therefore, in reality, the expansion process is not
localised to a single flux surface.

Apart from the direct displacement on the final deposition profile due to the
cross-field drift, the final deposition profile is also indirectly affected by the finite
expansion time. The reason for this is that the response of the plasma to the pellet
material affects any further ablation. For pellets with a significant impact on the
plasma temperature, the interaction between the plasma and the pellet material
is self-regulating; when the pellet material is ablated, it instantaneously cools the
plasma by dilution, resulting in a slowing down of the ablation. This self-regulation is
enhanced by assuming an instantaneous and local homogenisation and equilibration
process. However, the finite expansion time scale and the cross-field drift reduces the
self-regulation by delaying and displacing the cooling. This might have a significant
effect on the ablation, and hence also the final deposition profile.

In this section, we investigate the sensitivity to a finite expansion time scale and
cross-field drift on the final deposition profile. To do this, we emulate the effect that
a shard does not experience instant dilutive cooling of the background plasma by
the vanguard shards, by depositing the pellet material one radial grid cell behind
the ablating shards. Such an artificial shift can be used to roughly mimic the effect
of both radial drifts and expansion time delays, as the shift also introduces a delay
between the passing of the shards and the deposition of material on a given flux
surface. The duration of this time delay would be the width of the shift divided by
〈vp〉. When a time delay due to the finite expansion time is involved, the thermal
energy going into the pellet cloud is not instantaneously returned to the background
plasma. In such a case, the shards affect the local background plasma temperature
by absorbing the heat flux into the pellet cloud. When emulating the effect of a
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finite expansion time, we account for this energy absorption by adding a term(
∂WM

∂t

)
abs

= −
Ns∑
k=1

2qtotπr
2
cldH(r, ρp,k), (C.1)

to the energy transport equation (4.8). For simplicity, when including equation
(C.1), the delayed returning of the energy absorbed in the pellet cloud is neglected.
Also note that the finite rcld is only used to determine the magnitude of the heat
absorption, while the deposition kernel H(r, ρp,k) is still assumed to be a delta
function, unless otherwise noted. This is motivated by that a realistic rcld of the
order of 1 cm (see section 3.5.1) is smaller than the radial resolution used in our
simulations.

In addition to the shift of the deposition kernel discussed above, we also estimate
the effect of varying the shape of the deposition kernel. For the simulations presented
in chapter 5, the deposition kernel was assumed to be a delta function in the
continuous space. When discretised, however, the lower limit for the width of the
kernel is set by the width of the radial grid cell. The effect of this finite kernel
width is investigated here by varying the number Nr of radial grid points. To further
study the effect of different deposition kernel shapes, we also investigate the effect
of assuming a Gaussian deposition kernel, H(r, ρp,k) ∝ exp (−(r − ρp,k)2/r2

cld). Such
a kernel has been used for SPI-studies in ITER-like plasmas previously in e.g. [24].
Although a realistic value for rcld is of the order of 1 cm, for numerical reasons, the
value used for rcld in ref. [24] is 20 cm. Therefore, we also consider such a large value
of rcld and compare the final deposition profile to the one obtained with a delta-like
kernel.

We start with performing some of the studies described above for a single
unshattered pellet injection into a JET-like plasma. The assumed tokamak settings
are a = 1 m and R0 = 2.96 m, with initial profiles of temperature TM(t = 0) =
T0(1 − 0.75(r/a)2)2 and density nM(t = 0) = n0(1 − 0.9(r/a)2)2/3, where T0 = 3.1
keV and n0 = 2.8 · 1019 m−3. The injected pellet consists of pure deuterium and
has a radius of 3 mm, containing 6.8 · 1021 particles. The speed of the pellet is
vp = 160 m/s, directly aimed towards the plasma core (αp = 0). When applying a
shift to the deposition kernel as discussed above, the heat absorption in the pellet
cloud is calculated assuming rcld = 1 cm. These injection and plasma settings are
the same as those used in section 4.1 in ref. [77]. The simulations in ref. [77] are
similar to our shifted model, in the sense that the background density is assumed
to be unaffected by the pellet material as far as the pellet ablation is concerned.
Thus, the pellet ablation is not affected by dilutive cooling of the background plasma.
Note, however, that the pellet model used in ref. [77], which is described in detail
in ref. [46], accounts for the additional shielding of the pellet by the ablated but
not yet homogenised and equilibrated material, which is not accounted for by our
shift-approximation.

Figure C.1 a) shows simulations of this case, demonstrating the impact of shifting
the deposition profile. The result using two different radial resolutions are compared.
For the cases with an instantaneous and local deposition (labeled “local”), the pellet
passes through the center of the plasma. This is not observed in ref. [77] (see their
figure 1 c). When applying the shift, we see the pellet burns out completely about
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half way through the plasma, which is qualitatively similar to figure 1 c) in ref. [77].
The penetration depth is however somewhat smaller here, which is expected because
the pellet code used in ref. [77] also accounts for the additional shielding of the pellet
by the ablated but not yet homogenised and equilibrated material. Similar results are
obtained when changing the number of radial grid cells Nr from 11 to 50, confirming
that the radial spread only has a minor impact on the final deposition profile.
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Figure C.1: Deposition profiles obtained assuming an instantaneous and local flux
surface homogenisation and equilibration (labeled “local”), and applying a shift of
the deposition kernel one grid cell behind the pellet, to mimic the effect of a finite
expansion time and the cross field drift (labeled “shifted”). The radial grid spacing
and radial distribution of the ablated material is also varied. a) A JET-like case with
an unshattered deuterium pellet injection with Ninj = 6.8 · 1021 and vp = 160 m/s,
similar to the case studied in section 4.1 in ref. [77]. b) An ITER-like deuterium SPI
case similar to the one shown in ref. [58] (which uses the same initial profiles as used
in section 5.1-5.3), with Ninj = 2.2 · 1024, Ns = 300 and 〈vp〉 = 200 m/s.

We now move on to a similar comparison between the effect of a local and shifted
deposition model for an SPI case in an ITER-like plasma. We also consider the
impact of using an unrealistically wide Gaussian deposition kernel, similarly to what
is used in ref. [24]. Here, the tokamak settings and initial profiles are the same as the
ones used in this work in section 5.1-5.3. The pellet is made of pure deuterium, and
the injection parameters used here are Ns = 300 and 〈vp〉 = 200 m/s (i.e. a somewhat
slower pellet speed than in chapter 5). These settings are the same as the ones used
for the pure deuterium case studied with the code INDEX in ref. [58]. The model for
the pellet ablation and the resulting effect on the background plasma in this code is
similar to the model used in our work, presented in section 4.1. The result is shown
in figure C.1 b). When using local deposition, rather good agreement with [58] is
seen, regardless of the shape of the radial spread of the ablated material (note, here
we show the final profile, while the latest time slice shown in ref. [58] is at 6 ms. At
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this time, about 2% of the pellet material is still not ablated, which introduces a
small discrepancy for the core penetration). Note that the heat absorption is only
included in the shifted cases; for the green dashed curve, rcld is only used as the
width of the Gaussian deposition kernel.

When applying a shift to the deposition, a shift of one radial grid cell with
Nr = 11 in a plasma with a = 2 m would approximately correspond to a time delay
of a/(Nr〈vp〉) ≈ 1 ms, using 〈vp〉 = 200 m/s. Such a time scale is similar to that
expected for the flux surface homogenisation of the pellet material [43]. As the
number of shards increase, the total heat absorption increases. This happens because
the radius of the pellet cloud absorbing the heat flux is mostly determined by the
distance the particles travel before they ionize, which is not strongly affected by the
shard size. Depending on the pellet cloud radius, this absorption may compensate
substantially for the lack of dilutive cooling in the shifted cases.

Moreover, using a variance of ∆vp = 0.2〈vp〉, the radial extension of the plume of
shards becomes wider than the applied shift of a/Nr = 20 cm after about 2.5 ms.
During this time, the shards travel on average about a fourth of the distance towards
the plasma core. Thus, the later arriving shards still have time to feel the dilutive
cooling by the earlier arriving shards. As a result, depending on the value of rcld,
the final profile might not be very different from those obtained assuming a local
deposition and instantaneous expansion over the flux surfaces. This can be seen by
comparing the red dotted curve with the blue dash-dotted curve in figure C.1 b),
where the latter assumes rcld = 2 cm when calculating the heat absorption. The
discrepancy could be further reduced by accounting for the additional shielding by
the ablated but not yet homogenised and equilibrated material. However, the solid
black curve in figure C.1 b) with rcld = 1 cm differs substantially from the local cases.
In conclusion, a more accurate and self-consistent model for the transient plasma
response to the deposited pellet material would be needed to make quantitatively
accurate predictions for the final deposition profile.
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