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Abstract

A serious problem facing fusion devices with large currents are plasma-terminating disrup-
tions. These events sometimes result in the acceleration of electrons to very high energies,
so-called runaway electrons. The harmful effects of disruptions and associated runaway
electrons can be mitigated by material injections of argon or neon, often referred to as
impurities. This work is dedicated to the modelling of runaway electrons in disruptions.
Firstly, we investigate how runaway dynamics is affected by the presence of impurities.
To correctly capture the interaction of fast electrons and impurities, we improve runaway
generation formulae in a numerical model that calculates the runaway electron current
and the corresponding electric field evolution. The results of the simulations with the
improved model show that material injections drastically affect the calculated runaway
generation in a way that was not captured with the previous model. With pure argon gas
injections, the net effect is generally an increase in runaway generation.
Secondly, we couple the model with a solver for the electron momentum distribution,
which replaces the runaway generation formulae. This combined tool allows studying the
spatiotemporal evolution of the runaway electron energy spectrum. It can also be used to
validate the original model. We find that the original model gives too low runaway currents
in the case of fast temperature decay, but the discrepancy is lower for slower temperature
decays. We also address the numerical efficiency in the combined tool and show that the
simulation time can be reduced by an order of magnitude without compromising accuracy.

Keywords: Runaway electron, tokamak, fusion, plasma physics, kinetic modelling.
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Sammandrag

Ett allvarligt problem som kan uppstå i fusionsreaktorer med höga strömmar är disrup-
tioner. Dessa kan bilda högenergetiska elektroner, så kallade skenande elektroner. Genom
att injicera orenheter i plasmat, i form av exempelvis argon eller neon, kan skadliga effekter
av de skenande elektronerna samt disruptionerna förhindras. I det här arbetet modelleras
skenande elektroner i disruptioner.
Först undersöks dynamiken hos skenande elektroner då orenheter injiceras i plasmat.
För att studera interaktioner mellan snabba elektroner och orenheter på ett korrekt sätt
uppdateras modellerna för genereringstakt av skenande elektroner i en numerisk modell
som beräknar strömmen av skenande elektroner och den motsvarande utvecklingen av det
elektriska fältet. Simuleringar med den uppdaterade modellen visar att materialinjektioner
drastiskt påverkar genereringen av skenande elektroner på ett sätt som inte fångas upp
av den tidigare modellen. Med rena argoninjektioner fås generellt en ökning i antalet
skenande elektroner.
Därefter kopplades modellen till en lösare för fördelningen av elektronernas rörelsemängd
i syfte att studera utvecklingen i tid och rum av de skenande elektronernas energispek-
trum. Det kopplade verktyget användes även till att verifiera den ursprungliga modellens
giltighet. Den ursprungliga modellen observeras generera för låga strömmar av skenande
elektroner i scenarion där plasmatemperaturen sjunker mycket snabbt men denna skill-
nad minskar för långsammare temperaturfall. Till sist undersöker vi den numeriska ef-
fektiviteten i simuleringsverktygen och visar hur simulationstiden kraftigt kan reduceras
utan att resultatets precision påverkas.

Sökord: Skenande elektroner, tokamak, fusion, plasmafysik, kinetisk modellering.
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Chapter 1

Introduction

One of the greatest challenges facing human civilisation today is the ever-increasing use
of fossil fuels [1]. The burning of fossil fuels releases large quantities of greenhouse gasses
into the atmosphere, which, in turn, is the main cause of global warming. It is therefore
necessary to find alternative sources of energy. Harnessing nuclear energy can potentially
be a solution to this problem, providing cheap and environmentally sound energy [1], [2].

Nuclear energy is stored inside the nuclei of atoms, and today the only way to convert
this energy to electricity is through the use of fission [1]. Fission has many positive aspects,
such as near zero emission of greenhouse gasses and small fuel requirements, but there
are also several dangers associated with it. The radioactive isotopes that are produced
as waste must be safely stored for millions of years and there is a risk of the power plant
malfunctioning and releasing these dangerous isotopes into the environment.

To prevent these problems, the other approach to nuclear energy, fusion, can be used
[1]. Fusion works by combining two light nuclei into a heavier one, which releases energy.
Fusion has no long-lived waste products, and there is no way for the process to lead to a
large scale disaster. If a fusion power plant was to be constructed, it would be the ideal
source of energy, since it will have ample fuel reserves as well as very little environmental
impact [3].

However, controlling fusion is difficult, due to the extremely high temperatures that
are needed to overcome the repulsive forces between nuclei. Therefore, confinement with
a wall is not possible since it would melt. Instead, the particles are confined by a magnetic
field, which works since the fuel becomes a plasma at these temperatures. The tokamak
is one of the most promising fusion reactor designs [4]. It confines the plasma in a torus
configuration, using a strong magnetic field which is partially created by coils outside the
confinement and partially by a large plasma current.

Having large plasma currents can cause problems. In the case of an event that rapidly
cools the plasma, referred to as a disruption, the current would suddenly drop. In such
an event, a large electric field is created, that can accelerate a significant portion of the
electrons to high speeds. Unlike in normal gasses, the friction force acting upon fast
electrons decreases with increasing velocity, allowing them to continue to accelerate until
reaching relativistic speeds. These are called runaway electrons or just runaways, and
the study of them is of great importance to the future of fusion energy due to the risk of
them hitting important components of a reactor wall and causing significant damage [5].

During the past decades, there has been an international collaboration with the aim
of building a reactor-scale tokamak, called ITER (International Thermonuclear Experi-
mental Reactor) [2]. ITER is currently under construction in France and is expected to
be completed in 2025. Tokamaks of this size have to run at significantly higher plasma
currents than previous designs. This might be problematic due to an increase in the
creation of runaways. Once an initial runaway population is established, referred to as
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primary runaways, these can collide with other electrons in the plasma so that both col-
liding electrons become runaways. This phenomenon is known as the avalanche effect.
Under certain approximations, the avalanche is exponentially sensitive to the plasma cur-
rent, increasing the runaway generation in ITER significantly compared to present day
tokamaks [6].

If an unmitigated disruption was to happen in ITER, the runaway beam produced is
predicted to be able to melt several kilograms of the material from the inner wall [5].
Designing a system that can safely dissipate the thermal energy and the plasma current
without generating unacceptably high runaway currents is, therefore, one of the main
concerns for the construction of ITER [7]. The currently most researched method to
achieve this is to inject neutral gases in the plasma. In spite of research being made, the
effects of the massive gas injections are not completely understood. To devise counter-
measures to the runaway events, it is necessary to create numerical tools capable of
predicting the behaviour of runaways in scenarios with massive material injection. This
is the focus of the thesis.

1.1 Method

This work is based on simulations with numerical tools. Within recent years, several such
tools have been developed by the plasma theory research group at Chalmers University
of Technology. Two tools that are used extensively in this work are GO and CODE.
GO is used to model the behaviour of current, temperature, density and electric field as
a function of radius and time during a disruption [8], [9]. The generation of runaway
electrons is calculated using approximate analytic formulas and all the runaway electrons
are assumed to travel at the speed of light. In contrast, CODE (COllisional Distribution
of Electrons) determines the runaway generation rates by calculating the distribution of
electron momentum as a function of time, but does not have a radial coordinate [10], [11].

To accurately describe the dynamics during a disruption, the position and momentum
dynamics of electrons have to be simulated simultaneously. Although CODE is well-suited
for calculating the momentum-space distribution of the fast electrons, the lack of spatial
information is a severe drawback, due to the fact that the electron dynamics is sensitive to
the plasma parameters. Coupling of GO and CODE would allow a description of the radial
transport and evolution of background plasma parameters self-consistently. However, this
is a challenging task for currently available computational resources. An initial study to
perform such a coupling is presented in [12], where it was concluded that it is currently
not feasible to use the coupled tool to model scenarios in large tokamaks or make extensive
parameter scans with all important effects taken into account. This raises a demand to
improve more approximate and numerically efficient models such as updating the accuracy
of GO, in addition to creating hybrid tools that simulate the dynamics simultaneously.

1.2 Purpose

The thesis is focused on the numerical modelling of runaway electron dynamics during
disruptions in tokamaks. This will be done through simulations made with improved
versions of GO and GO+CODE. The avalanche and primary runaway generation rates
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in GO will be updated to take into account effects in a partially ionised plasma. This is
necessary to accurately model disruption mitigation by massive gas injections. Finally,
a coupled GO+CODE will be developed, and the numerical efficiency of it improved.
Simulations performed with GO+CODE will be used to investigate cases with very fast
temperature drops, where the validity of the approximate runaway generation models
used in GO are questionable.

1.3 Limitations

The focus of this thesis is on the implementation of models already published in the
literature. Limitations will be set by the approximations made in the numerical tools
GO and CODE. These approximations are either motivated by computational cost or the
properties of a tokamak. The tokamak is approximated as a cylinder and all quantities
are assumed to only depend on the distance from the central axis. This works as an
approximation of a torus if the ratio between the major and minor radii is large enough.
Further limitations of the tools will be explained in detail in Chapter 3.

1.4 Social and ethical aspects

As energy consumption continues to increase, a full-scale fusion reactor is one of the few,
albeit theoretical, promising large-scale, carbon-free and environmentally friendly energy
sources. Fusion reactors are also safe as the energy production has to be actively controlled
and can be shut down immediately at any malfunction. The disadvantages of fusion are
connected to the difficult engineering and scientific challenges. Understanding runaway
dynamics is one of these challenges and it is essential for the future success of fusion.
No known weapon research or any other sensitive ethical dilemmas are connected to the
runaway problem.

1.5 Thesis Outline

The structure of the thesis is as follows: in Chapter 2, the relevant background theory
of plasma properties and electrodynamics will be explained, leading to a more elaborate
description of runaway electrons and how they are created in tokamak disruptions. In
Chapter 3, GO and CODE are described in more detail. Improvements and simulations
done with GO are presented in Chapter 4 and improvements and simulations with coupled
GO and CODE are presented in Chapter 5. Finally, conclusions are summarised and
suggestions for future development discussed in Chapter 6.
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Chapter 2

Plasma Theory and Disruptions

Plasma physics models can be derived from first principles using only classical mechanics
and electrodynamics. The complications first appear when the collective behaviour of
the large number of particles is considered. This chapter will begin with an overview
of the main features of a tokamak, and how it functions. Later the motion of particles
in a plasma, due to external fields and collisions, will be described. These relationships
will then be used to explain the runaway phenomenon and how runaway electrons are
generated during disruptions in tokamaks. Finally, some of the requirements for a safe
disruption mitigation system are discussed.

2.1 Tokamaks

The high temperatures required to initiate and maintain the fusion process demands a
fusion reactor design that can confine the plasma without its high temperature damaging
the reactor. Though several such designs exist, the tokamak is the most studied design
due to its relative simplicity and stability [13, p. 289]. The tokamak design, illustrated in
Fig. 2.1, consists of a toroidal vacuum chamber in which the fusion fuel, most commonly
consisting of deuterium and tritium,1 is confined. The major and minor radii of the
tokamak chamber are denoted as R and a respectively, and the minor radius coordinate is
denoted by r. The magnetic axis is the centre of the cross-section of the tokamak, where
r = 0.

Bφ

Bθ J

aR

Figure 2.1: Schematic illustration of a tokamak with major radius R and minor radius a. The
toroidal Bθ and poloidal Bφ of the magnetic field, as well as the plasma current J , are also
depicted.

1When generating fusion energy, the fusion reaction taking place is between deuterium and tritium.
However, the models used in this thesis do not make any differences between isotopes with the same
atomic number, and we can, therefore, consider plasmas consisting of only deuterium.
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Since the fuel is ionised, magnetic fields induced by coils placed around the chamber
allow for the plasma to be controlled and confined. In the presence of a magnetic field,
the charged particles will follow helical paths around the magnetic field lines, called gyro-
orbits. The toroidal magnetic field Bθ induced by the external coils will, however, be
stronger closer to the centre of the tokamak. The radius of the particle orbits around the
magnetic field lines will, therefore, be smaller closer to the centre of the tokamak than on
the rest of the orbit. This causes a vertical drift out of the confinement. To avoid this, a
strong current J in the order of a few MA is induced in the plasma, as shown in figure
Fig. 2.1. This current gives rise to a poloidal component Bφ of the magnetic field lines,
which reduces the vertical drift. Plasma parameters for selected tokamaks can be found
in Appendix A.

2.2 Plasma Definition

The defining characteristic of a plasma is that the electrons and nuclei are free to move
independently of each other [13, p. 3]. This stands in contrast to the other states of
matter in which the electrons are bound to the nuclei, forming atoms and molecules. In a
fully ionised plasma, the material can be considered to consist of only ions and electrons.
A partially ionised plasma is a plasma in which not all atoms have been completely
ionised. In either case, particle interactions are dominated by repelling and attractive
forces between charges.

A plasma differs in several ways from the other states of matter. One way is that
charges are shielded from each other in a process known as Debye shielding [1, p. 121].
Negatively charged electrons will gather around any positively charged particle, thus
making the positive charge practically invisible beyond a certain length scale. This length
is known as the Debye length, λD. Debye shielding implies that the plasma is quasi-neutral,
that is, the plasma at large has no observable net charge.

For the statistical treatment of a plasma to be applicable, the plasma dimension, L,
has to be much larger than the Debye length [13, p. 11]. Another requirement is that the
number of particles inside a sphere with the radius of a Debye length, ND, must be very
large. This is to make sure that there are particles present able to shield the charge. If
there are neutral particles present, the frequency of collisions between them and electrons,
ν, have to be smaller than the plasma oscillation frequency,2 ω, for the material to behave
like a plasma. These requirements can be summarised as

L� λD, ND ≫ 1, ω > ν.

2.3 Statistical Description

Due to the large number of particles in a plasma, it is infeasible to describe the motion of
every single one. Instead, distribution functions that give statistical information about the
distribution of particles in phase space (the combined momentum and position space) are
used. The distribution function for particles of species k is denoted fk and is normalised
such that fk(x,p) d3x d3p is the number of particles of species k inside the phase space

2The plasma oscillation frequency is rather involved and will therefore not be described in this thesis.
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volume element d3x d3p, where x and p are the coordinates in position and momentum
space respectively. Several species at the same time can be considered, for example ions
and electrons, (fi, fe).3 The position dependence of the distribution function can be
dropped, in which case

nk =

∫
fk(p) d3p

where nk is the particle density of particle species k. The time dependence of fk is also
implicitly dropped.

To describe the evolution of the distribution function, the conservation equation [14]

∂fk
∂t

+
dx

dt
· ∂fk
∂x

+
dp

dt
· ∂fk
∂p

= 0,

is used. The change in momentum of a particle is governed by the electromagnetic fields,
E and B, through the Lorentz-force

dpk
dt

= qk(E + vk ×B),

where qk, mk, vk, pk are the charge, mass, velocity and momentum of the particle k.
The charges themselves also have an impact on the electromagnetic fields, but these

will be inconvenient to consider, since they are rapidly changing in both time and space.
Instead, the electromagnetic fields are assumed to be macroscopic and averaged such that

∂fk
∂t

+ v · ∂fk
∂x

+ qk(E + vk ×B) · ∂fk
∂p

= Ck{fk}, (2.1)

where the collision operator Ck{fk} is included to account for the otherwise excluded
interactions between particles. This equation is called the kinetic equation.

In the absence of external forces, collisions will make the distribution approach a
Maxwellian [14, p. 35],

fMk(v) =
nk

π3/2v3
Tk

e−(v/vTk)2

, (2.2)

where vTk =
√

2Tk/mk is the most probable speed, and Tk is the temperature of species
k. As is customary in plasma physics the temperature is defined as the average kinetic
energy of particles, which differs from the thermodynamic definition by a factor of the
Boltzmann constant.

2.4 Coulomb Collisions

When two charged particles come close to each other they exchange momentum through
the Coulomb force. These events are referred to as Coulomb collisions, and they behave
differently compared to collisions between particles in an ordinary gas. In Coulomb colli-
sions, the particles do not actually hit each other, but they are instead deflected smoothly

3Throughout this text, the indices i and e denote ions and electrons respectively.
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by the Coulomb force. In such collisions, a higher impact speed can be shown to result
in a smaller change in momentum of the incoming particle [1, p. 190]. This is the basic
phenomenon behind the behaviour of the electrical conductivity and drag force felt by
electrons in the plasma, in turn giving rise to the mechanisms by which runaway electrons
are generated during tokamak disruptions.

2.4.1 Small Angle Collisions Between Two Charged Particles

Most interactions will not significantly change the velocity of a particle in a plasma, but
the accumulation of many small angle collisions still have a larger impact than the few
large angle collisions [1, p. 184]. To account for the small angle collisions between particles,
the change in velocity of a particle k due to an interaction with a particle of type l is of
interest. A non-relativistic calculation of this change of velocity is presented here.

Let b be the distance between the two particles at closest approach if they were not to
interact. This distance is called the impact parameter. If the masses of the particles are
comparable, both k and l will change velocities during the collision. This is a classical two-
body problem. To turn it into a one-body problem, the relative coordinates, x = xk−xl,
u = dx/dt , are used. An illustration of these coordinates is shown in Fig. 2.2.

k

l

u

x b

vl

Collision

k

l

u

x

u−∆u‖
∆u⊥

vl

Figure 2.2: Coordinates used when calculating the collision frequency. Prior and posterior
coordinates are illustrated. The coordinate system travels with vl, the speed of the l species.

Let m∗ = (m−1
k + m−1

l )−1, Newton’s laws of motion as well as Coulomb’s law then
gives

d2x

dt2
=

d2xk
dt2
− d2xl

dt2
=

1

m∗
qkql

4πε0x3
x. (2.3)

Let ∆u⊥ be the perpendicular change in u during the collision. Since only small
changes in velocity are considered, the approximation x2(t) ≈ b2 + u2t2 can be made,
where t is a time parameter such that t = 0 at closest approach. Equation (2.3) can then
be used to calculate

∆u⊥ ≈
∫ ∞
−∞

1

m∗
qkql

4πε0x2

b

x
dt =

1

m∗
qkql
4πε0

∫ ∞
−∞

b

(b2 + u2t2)3/2
dt =

1

m∗
qkql

2πε0ub
.

The smallest b considered, bmin, is when ∆u⊥ ∼ u, giving bmin := (qkql)/(2πε0u
2m∗).

Collisions with impact parameter smaller than bmin are considered large angle collisions,
and can thus be justified to be ignored.
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From geometry and the conservation of energy (u − ∆u‖)
2 + (∆u⊥)2 = u2. This

reduces to ∆u‖ = −(∆u⊥)2/(2u) by assuming that ∆u‖/u is small. From the relationship
xk(mk +ml) = mkxk +mlxl +mlx, conservation of momentum gives

vk =
ml

mk +ml

u

The changes in vk during the collisions can then be summarised with

∆vk⊥ =
ml

mk +ml

1

m∗
qkql

2πε0ub
=

qkql
2πε0ubmk

∆vk‖ = − ml

mk +ml

(
1

m∗
qkql

2πε0ub

)2
1

2u
= −

(
1 +

mk

ml

)(
qkql

2πε0mk

)2
1

2b2u3
.

Note that the parallel and perpendicular parts are in relation to u, or in other words
∆vk = ∆vk‖û + ∆vk⊥b̂, where b̂ is in the direction of the impact parameter. Due to
symmetry, the exact direction of b̂ will not be important.

2.4.2 Drag Force

During a set of events under the time period dt the average change in velocity of a single
particle of type k due to collisions with particles of type l will be4

d〈∆v〉kl =

∫ b=λD

b=bmin

2πb db

∫
v′
fl(v

′)u dt∆vkl d3v′ .

The upper limit of the b integral is chosen to exclude the effect of particles with distance
larger than λD due to the particles being sufficiently screened at those length scales. The
lower limit is chosen due to the approximations being invalid below that point.

By observing that changes in ∆v perpendicular to the velocity will average out due
to symmetry, the change in velocity along the z-axis can be written as

d〈∆vz〉kl
dt

=

∫ b=λD

b=bmin

2πb db

∫
v′
fl(v

′)u∆vkl‖ û d3v′

= −
(

1 +
mk

ml

)
q2
kq

2
l ln Λ

4πε2
0m

2
k

∫
v′

fl(v
′)

u2

uz
u

d3v′ ,

(2.4)

where ln Λ = ln
(
λD/bmin

)
is approximated to not be dependent on the relative velocity.

The last equality comes from expanding the parallel velocity and integrating with respect
to b.

The factor ln Λ is called the Coulomb logarithm. In an ordinary plasma it is roughly
10 to 20, and is proportional to the logarithm of the number of particles in the Debye
sphere, ND [14]. Therefore, by the definition of a plasma, the Coulomb logarithm can
always be considered to be large.

4 All collisions during time dt and impact parameter b take place in the cylindrical shell with the
length udt, circumference 2πb and thickness db. Then the integral is just a cause of the definition of
expectation value.
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Since the equilibrium distribution fl of the particles of species l will approach a
Maxwellian in the absence of external forces, fl can often be approximated as such. In
that case, by noting the isotropy of fl and similarities with inverse square forces, Newton’s
shell theorem can be used to carry out the integral [15, Proposition 70-71]∫

v′
fl(v

′)
1

u2

uz
u

d3v′ =
1

v2
k

∫
|v′|≤vk

fl(v
′) d3v′ =

nl
v2

Tl

erf(s)− s erf ′(s)

s2
=

2nl
v2

Tl

G(s),

where s = vk/vTl, erf(s) is the error function, and G(s) = (erf(s) − s erf ′(s))/(2s2).
The latter integral is solved using spherical coordinates. As can be seen, the dynamical
friction is proportional to G(s), the Chandrasekhar function, which has the shape plotted
in Fig. 2.3. The asymptotic behaviour of G is 2s/(3

√
π) when s → 0, and 1/(2s2) when

s→∞. This result agrees with a relativistic derivation for particle energies much smaller
than the particle rest energy, despite the derivation being non-relativistic [14, p. 47].

vTe c

min

max

velocity

dy
na

m
ic

fr
ic
ti
on
∝
G

(s
)

Figure 2.3: Frictional force plotted against velocity. Asymptotic behaviours of the Chan-
drasekhar function are in dashed lines. Velocities are not necessarily to scale.

2.4.3 Collision Frequency

It is useful to have a measure of how often collisions are happening. Therefore, a reasonable
definition of the collision frequency, νkl, is how often the velocity is significantly changed
due to collisions [14, p. 39],

d〈∆v〉kl
dt

= −vzνkl.

For simplicity, only electron-ion collisions are considered, in which case me/mi ≈ 0 and
fi(v) ≈ δ(v), where δ is the Dirac delta function. Eq. (2.4) is then simplified significantly,
which gives

νei =
niq

2
eq

2
i ln Λ

4πε2
0m

2
ev

3
e

.

The inverse of the collision frequency is the collision time, τkl := 1/νkl.
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2.4.4 Conductivity

External electric fields cause charged particles in a plasma to move, thus creating currents.
For currents carried by electrons with velocities similar to the thermal velocity, the relation
between the current and the electric field can be described by Ohm’s law, Johm = σE,
where σ is the conductivity [13, p. 160].

Let 〈vd〉 be the average drift velocity of electrons. The current is then given by
Johm = neqe〈vd〉. The contribution to the current from the motion of ions is negligible
due to the ions having much higher inertia than electrons. Only electron-ion collisions
need be considered when estimating the conductivity since the conservation of momentum
causes electron-electron collisions to have no impact on the current. The conductivity can
then be calculated by assuming that the electron distribution is a shifted Maxwellian,
and then solving for the drift speed that equates the frictional force due to electron-ion
collisions and electric force. The relationship

σ =
(4πε0)2 T 3/2

πZe2m
1/2
e ln Λ

, (2.5)

where Z is the atomic number of the ion and e is the elementary charge, is then found
[16]. Note, however, that Ohm’s law is only valid in a plasma for currents carried by
thermal electrons and cannot describe currents carried by runaway electrons.

2.5 Runaway Electrons

As can be seen by the shape of the Chandrasekhar function in Fig. 2.3, the drag force
becomes smaller when the velocity is increased. If a strong enough electric field is present,
electrons with a velocity above a certain critical velocity, vc, could therefore be accelerated
indefinitely. These are called runaway electrons. The dominating drag force at these
speeds will be from electron-electron collisions [14]. By inserting the asymptotic behaviour
of the Chandrasekhar function in Eq. (2.4), this force can be approximated to be

F ee =
q4

ene ln Λ

2πε2
0mev2

e

. (2.6)

The Chandrasekhar function has a maximum at s = 1 (ve = vTe), and then decreases
monotonically as s approaches infinity. Therefore, in the presence of an electric field that
causes an accelerating force stronger than the friction force at s = 1, all electrons will
become runaways. A measure of this electric field is obtained by inserting s = 1 in the
asymptotic behaviour of the Chandrasekhar function for large s. It is called the Dreicer
field, and is given by [14, p. 39]

ED :=
q3

ene ln Λ

4πε2
0Te

.

The actual value for the electric field required to make all electrons become runaways
is 0.21ED. Since the friction force decreases monotonically with velocity for s ≥ 1, a
minimum friction force is obtained for electrons travelling at the speed of light. The
electric field needed to overcome this friction force defines a lower limit for the electric
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field below which no runaways can be created. From a relativistic derivation, this electric
field, called the critical electric field, is found to be [17]

Ec :=
q3

ene ln Λ

4πε2
0mec2

, (2.7)

A similar expression can be found by inserting ve = c in Eq. (2.4).

2.5.1 Disruptions

In a fusion tokamak, events called disruptions can occur where the plasma confinement
is suddenly lost and the temperature drops rapidly [5]. The time phase in which the
temperature drops is called the thermal quench. In this phase, the conductivity also
drops, since σ ∝ T 3/2 as seen in Eq. (2.5). Due to induction, the current cannot drop
arbitrarily fast, and there must be a rise in the electric field to compensate for the reduced
conductivity. The ohmic current then drops over a longer time scale, in a phase called
the current quench.

In a simplified model, where the temperature decreases from T1 to T2 instantly, the
change in the electric field can be estimated using conservation of ohmic current, which
gives E2 ∼ E1(T1/T2)3/2. This mechanism can generate electric fields much larger than
the critical field, Ec, potentially causing the creation of runaways.

More generally, one can use the electric field diffusion equation to get the electric field
evolution. This reads

∇2E =
∂

∂t
(µ0J), (2.8)

and is obtained from Maxwell’s equations by neglecting the displacement current and
assuming quasi-neutrality. Intuitively, when the current decreases an electric field is
induced to try and maintain the current. The total current can be written as the sum of
the ohmic current and the runaway current, so that Eq. (2.8) can be written as

∇2E = µ0
∂

∂t
(σE + J run). (2.9)

2.5.2 Runaway Generation Mechanisms

For an electron to become a runaway its velocity has to get above the critical velocity. In
tokamak disruptions, the most important generation mechanisms are Dreicer, avalanche,
and hot-tail. In addition to these, runaways can also be produced by tritium decay or by
gamma-rays generated from the radioactive decay of the wall material, but these will be
neglected in this thesis.

The Dreicer generation of runaways is caused by particles randomly getting a velocity
larger than the critical velocity, vc, due to the statistical nature of Coulomb collisions
[18]. The hot-tail generation comes into play when the temperature drops quickly during
a disruption [19]. In this case, vc will decrease faster than the electrons have time to slow
down due to the decreasing temperature. Electrons with velocities above vc will then
become runaways.

11



The avalanche generation is due to large-angle collisions between electrons [6]. It can
become significant if an electron with a velocity above vc transfers a significant amount
of its momentum to a slow electron, pushing it above the critical velocity. This new
electron can then also potentially collide with yet another, causing an exponential growth
of the runaway electron population, an “avalanche”. Since this mechanism amplifies a pre-
existing runaway population, referred to as a runaway seed or just seed, runaway electrons
created by the avalanche mechanism are called secondary runaway electrons. Runaways
generated by other mechanisms are called primary runaway electrons.

There are also several other mechanisms affecting the runaway generation which are
not included in this thesis. For example, the runaway electrons do not necessarily stay
in the plasma. A significant loss mechanism of runaways is diffusion partially caused
by perturbations in the magnetic field. Another generation mechanism excluded is γ-
generation where high energy γ-rays transfer energy to electrons pushing them over the
critical velocity.

2.6 Disruption Mitigation

Disruptions can cause severe damage to an ITER-sized tokamak, both by runaway currents
striking the wall and other mechanisms [7]. The amount of energy to be dissipated is
approximately 350 MJ of thermal energy and 1 GJ of magnetic energy. The details of the
damages caused by disruptions are beyond the scope of this thesis, but some constraints
that must be satisfied by the mitigation system, according to [7], are listed below.

When designing a disruption mitigation system, there are mainly three parameters
one wants to control: the thermal quench time, the current quench time and how much
runaway current is formed. The currently most promising way to mitigate disruptions
is to inject neutral gas into the plasma. If a sufficient amount of gas is injected, the
thermal energy can be radiated away faster than it is lost by convection, resulting in a
more uniform distribution of the heat load on the vessel. Suitable gases for this purpose
are noble gases such as argon or neon.

Disruptions in ITER are expected to have a warning time of about 20 ms and an
unmitigated thermal quench time in the order of 1 ms to 2 ms. To limit the heat load on
the vessel the disruption mitigation system should radiate away the thermal energy faster
than that. To avoid unacceptable electromagnetic forces on the vessel, the current quench
time should be longer than 50 ms in order to limit the induced currents in the tokamak
structure surrounding the plasma. In addition, the current quench time should not be
longer than 150 ms so that the current quench is over before the plasma drifts into the wall.
The current quench time is mostly determined by the post-disruption temperature, which
in turn depends on the amount of injected gas. Finally, the runaway current striking the
wall should not be higher than 2 MA.

To dampen the runaway generation, argon or neon injections can be combined with
extra deuterium. The extra deuterium raises the electron density in order to increase the
critical electric field, while only having a small effect on the radiation loss time scale and
current quench time scale. The increased critical electric field would, in turn, dampen the
runaway generation, especially the secondary generation.
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Chapter 3

Numerical Tools

When modelling a plasma, simulating every single particle present is not remotely feasible
due to the density of particles being on the order of 1020 m−3. Instead, the kinetic equation,
Eq. (2.1), is used to determine the electron distribution function. This is referred to as
kinetic modelling. Solving the kinetic equation over the whole phase space is however
still not computationally possible, so further simplifications have to be made. There are
several ways this can be done. One way is to assume that the processes studied are
happening on time scales longer than the collision time and that the velocity distribution
at every point, therefore, is close to a steady state. This reduces the equation to only
three dimensions, and is called fluid modelling. For shorter timescales, fluid modelling can
be insufficient due to the lack of information about the velocity distribution. In that case,
the spatial dependence could instead be neglected, therefore only simulating the velocity
distribution. This is a type of kinetic modelling. There are also several ways of making
use of symmetries to reduce dimensionality. In the following sections, it is described how
this is done in the simulation tools GO and CODE.

3.1 GO

GO is a fluid model which calculates the self-consistent evolution of the electric field
and current during a disruption scenario [8], [20]. The current density is divided into
an ohmic part, Johm = σE, and a runaway part Jrun. The runaway part is calculated
by approximate analytical expressions for the growth rates of the previously described
runaway generation mechanisms. All runaways are assumed to travel with the speed of
light, so that Jrun = qecnrun where nrun is the runaway electron density. The main part of
the code solves the coupled system of differential equations consisting of the electric field
evolution, which is given by Eq. (2.9) and analytical formulae for the runaway growth
rate. In GO, the plasma is approximated as an axially symmetric cylinder, but toroidal
corrections are taken into account in the expression of the plasma conductivity. With
cylindrical symmetry, Eq. (2.9) reduces to

1

r

∂

∂r
r
∂E‖
∂r

= µ0
∂J

∂t
= µ0

∂

∂t
(σE‖ + Jrun),

Jrun = qecnrun

where E‖ is the component of the electric field parallel to the magnetic axis.
The temperature is assumed to decay exponentially in time between a given initial

profile Ti(r) and final profile Tf(r) according to T (r, t) = Tf(r)+
(
Ti(r)−Tf(r)

)
exp
(
−t/t0

)
,

where t0 ∼ 1 ms, referred to as the thermal quench time, is given by the user. Using

13



predetermined input is useful if the temperature and density development is known from
experiments, and in numerical model developments, which is focused on in this thesis.

To calculate the runaway current, analytical models for different runaway mechanisms
are used [20]. More specifically, the Dreicer mechanism is modelled by

(
∂nrun

∂t

)Dreicer

=
ne

τ

(
mec

2

2Te

)3/2(
ED

E‖

)3(1+Zeff)/16

exp

− ED

4E‖
−
√

(1 + Zeff)ED

E‖

 , (3.1)

where Zeff = (
∑

i Z
2
i ni)/ne is the effective ion charge [17] and τ = 4πε2

0m
2
ec

3/(nee
4 ln Λ)

is the collision time for relativistic electrons. The avalanche is modelled by the analytical
formula of Rosenbluth and Putvinski(

∂nrun

∂t

)avalanche

=nrun

E‖/Ec − 1

τ ln Λ

√
πϕ

3(Zeff + 5)
·(

1− Ec

E‖
+

4π(Zeff + 1)2

3ϕ(Zeff + 5)(E2
‖/E

2
c + 4

ϕ2 − 1)

)−1/2

,

(3.2)

where ϕ = (1 + 1.46ε1/2 + 1.72ε)−1 and ε = a/R is the inverse aspect ratio of the tokamak
[6]. These two formulae are derived assuming a fully ionised plasma.

The hot-tail generation is calculated from a solution to a simplified version of the
kinetic equation. Here, the effect of the electric field is not taken into account other than
that it determines the momentum boundary of the runaway region. The kinetic equation
being solved for f is

∂f

∂t
= C{f} =

q4
en ln Λ

8πε2
0me

1

v2

∂

∂v

[
v2G(v/vT)

(
1

T
f(v) +

1

mev

∂f(v)

∂v

)]
. (3.3)

In the case of an exponential-like temperature development, this equation can be treated
analytically according to [21]. Otherwise, Eq. (3.3) is solved numerically [20]. The solution
is then used to calculate the hot tail generation using(

∂nrun

∂t

)hot−tail

≈ 4π
d

dt

∫ ∞
vc

(v2 − v2
c )f dv .

The total runaway density evolution is thus given by

∂nrun

∂t
=

(
∂nrun

∂t

)Dreicer

+

(
∂nrun

∂t

)hot-tail

+

(
∂nrun

∂t

)avalanche

.

In this work, runaway generation due to tritium decay or gamma-rays originating from
the activated wall, as well as losses of runaways, are neglected.

All derivatives are discretised by finite difference approximations. The electric field
diffusion equation and runaway diffusion term is discretised by a Crank-Nicolson scheme.
As a standard for the kind of simulations performed in this thesis, the time resolution is
1 µs and the radial discretisation is homogeneous with a spacing of a/101.
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3.2 CODE

CODE solves for the time-evolution of the electron momentum distribution using kinetic
modelling [10], [11]. To be able to do this efficiently, some simplifying assumptions are
made. The first is to assume that the plasma is homogeneous in space. The second
assumption is that the distribution in momentum space has cylindrical symmetry around
the electric and magnetic field lines. This assumption can be made since the gyro-orbits of
the electrons are very fast compared to the other relevant time scales, and thus averages
out. Another assumption that is made is that the electromagnetic fields, E and B, are
parallel, which is approximately the case either close to the magnetic axis, or in a tokamak
with a major radius much larger than the minor radius.

As CODE uses kinetic models, it solves Eq. (2.1), which, with the spatial gradient
removed due to the assumed homogeneity, becomes

∂fe

∂t
+ qe(E + v ×B) · ∂fe

∂p
= C{fe}+ S{fe},

where a source term, S, has been added in order to model avalanche generation and to
numerically control the density and temperature evolution. The exact form of the collision
operator and the source terms are rather involved and are therefore not included here. A
description of the original implementation is found in [10].

CODE parameterises p using the spherical coordinates p, θ, and φ, where p is the
magnitude, θ is the angle with respect to E, and φ is the gyro-angle around E. The
expansion of the gradient into these new coordinates gives

∂fe

∂p
=
∂fe

∂p
p̂+

1

p

∂fe

∂θ
θ̂ +

1

p sin θ

∂fe

∂φ
φ̂.

The last term vanishes due to the assumed cylindrical symmetry, and thus the coordinate
φ is not used in CODE. The dot product can be distributed using the relationships
(v ×B) · p̂ = (v ×B) · θ̂ = 0, E · p̂ = E cos θ, and E · θ̂ = −E sin θ. These are simply
an effect of how the parameterisation was chosen, and because of the assumption that B
is in the direction of E. Combining these, the effects of the magnetic field vanishes and
only scalar quantities remain,

∂fe

∂t
+ qeE

(
cos θ

∂fe

∂p
− sin θ

p

∂fe

∂θ

)
=
∂fe

∂t
+ qeE

(
ξ
∂fe

∂p
+

1− ξ2

p

∂fe

∂ξ

)
= C{fe}+ S{fe},

where ξ = cos θ.
The collision operator can be described as the sum of the contributions from electron-

electron and electron-ion collisions, C{fe} = Cee{fe, fe} + Cei{fe, fi}. The electron-ion
contribution is linear in f since the Coulomb collision operator is bilinear, that is to say

Ckl{fk + gk, fl} = Ckl{fk, fl}+ Ckl{gk, fl}
Ckl{fk, fl + gl} = Ckl{fk, fl}+ Ckl{fk, gl}
Ckl{ckfl, ckfl} = ckclCkl{fk, fl},
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for any distributions fk, gk, fl, gl, and constants ck, cl [14]. This, however, makes the
collision operator for electron-electron collisions nonlinear, since using the relations above
give Cee{2fe} = Cee{2fe, 2fe} = 4Cee{fe}.

Since the distribution function is close to a Maxwellian, a simpler linear collision
operator can be derived. In this case, fe = fMe + fe0 where fMe is the Maxwellian part,
and fe0 � fMe. The operator can now be approximated as

Cee{fe} = Cee{fMe + fe0}
= Cee{fMe, fMe}+ Cee{fMe, fe0}+ Cee{fe0, fMe}+ Cee{fe0, fe0}
≈ Cee{fMe, fe0}+ Cee{fe0, fMe} =: C l

ee{fe},
where the quadratic term in fe0 has been neglected. Collisions between two Maxwellian
distributions with the same temperature vanish since they are at the same thermodynam-
ical equilibrium. The linear collision operator C l

ee{fe} is used in CODE. For performance
reasons, the field particle term, Cee{fMe, fe0}, is sometimes also neglected because of its
weak effect on runaway dynamics.

When the collision operator is linearised, the kinetic equation can be written as
∂fe

∂t
+Mfe = S, (3.4)

where M is a linear operator such that

Mfe = qeE

(
ξ
∂fe

∂p
+

1− ξ2

p

∂fe

∂ξ

)
− C{fe}.

The ξ parameter is discretised in Nξ Legendre polynomials, PL such that

fe(p, ξ) =
∞∑
L=0

FL(p)PL(ξ) ≈
Nξ−1∑
L=0

FL(p)PL(ξ).

Internally in CODE, the normalised momentum y = p/(mevTe) is used instead of p. Using
finite differences, the new parameter y is discretised such that the distribution function
can be stored as

F =

[[
F0(y1) . . . F0(ymax)

]
. . .

[
FNξ−1

(y1) . . . FNξ−1
(ymax)

]]T

.

The reason for choosing this discretisation is that the operatorM becomes a sparse matrix,
which makes numerical calculations efficient. The number of discrete y coordinates is
denoted by Ny.

Equation (3.4) is then solved using an implicit method, most commonly backward
Euler, taking time steps of length ∆t. In that case Eq. (3.4) is written as

Ft+∆t − Ft
∆t

+MFt+∆t = S,

which can be rewritten as

Ft+∆t = (I + ∆tM)−1(Ft + ∆tS),

where I is the identity matrix. For numerical speed, CODE uses a sparse LU-factorisation
of I + ∆tM . After being created, the M matrix does not change unless the tempera-
ture, the electric field, or similar plasma parameters are updated. Therefore, the LU-
factorisation can be reused over all the time steps with similar plasma quantities.
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Chapter 4

Improved Fluid Model Simulations

In this chapter, improvements and simulation results obtained with GO are described.
As noted in Section 3.1, the equations used to model the Dreicer and avalanche mech-
anisms in GO, Eq. (3.1) and Eq. (3.2), are only valid in a fully ionised plasma. When
mitigating disruptions using neutral gas injection, not all injected particles will be fully
ionised. Interactions with bound electrons are therefore important to model accurately in
such a scenario. In Section 4.1, a neural network trained on kinetic models to calculate
Dreicer runaway generation in the presence of partially ionised impurities is described
and some initial simulation results obtained with the neural network are shown. In Sec-
tion 4.2, the calculation of the avalanche growth rate is updated to take effects of partially
ionised impurities into account, and the updated growth rate is investigated in ITER-like
scenarios.

4.1 Dreicer Calculation with Impurities

The calculation of the Dreicer growth rate using CODE is computationally expensive.
Instead of directly running CODE, a neural network that has been trained on a large
number of CODE simulations was used. The neural network functions as an interpolation
between the input containing information about the plasma, and the output representing
the corresponding growth rate. It is able to predict a simulation output from a collection
of similar simulations. The network has been developed in another project and is used
here due to its applicability to GO simulations.

Several parameters relating to the densities of the impurities, as well as the electric
field, and temperature are used as input to the neural network, through the vector, x.
The atomic number and the charge of species a will be denoted by Za and Z0a respectively.
For instance, the ion Ar5+ gives Z = 18, Z0 = 5. The input vector has the information

x =

(
E

ED

, log

(
Te

eV

)
, log

(∑
a

(Za − Z0a)na

)
, log

(∑
a

Z0ana

)
,

log

(∑
a

(Z2
a − Z2

0a)na

)
, log

(∑
a

Z2
0ana

))
,

where the third and fourth elements can be seen as the logarithm of the density of free
electrons, and the logarithm of the density of bound electrons. For numerical stability,
the input vector is normalised within the range [0, 1] and is denoted by x̃.

The output of the network, G̃ is the logarithm of the growth rate, which is also
normalised to [0, 1]. The network itself can then be described as the matrix equation

G̃ = W3g(W2g(W1x̃+ b1) + b2) + b3,
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where W1 ∈ R20×6, W2 ∈ R20×20, W3 ∈ R1×20 are weight matrices, b1 ∈ R20×1, b2 ∈
R20×1, b3 ∈ R1×1 are bias vectors, and the activation function g(x) :=

(
1 + exp(−x)

)−1 is
applied element-wise to each matrix separately. This type of network is widely used, and
is called a multilayer perceptron [22, p. 178]. To find appropriate values for weights and bi-
ases, the network was trained on results from approximately a million CODE simulations,
using backpropagation, a standard machine learning technique [22, p. 183].

The final neural network is several orders of magnitude faster than running CODE
directly,1 since it only consists of a few matrix multiplications, vector additions, and ap-
plications of the g function. By training the network for different temperatures, densities,
and ionisation degrees, it could then be used in other simulation tools, such as GO.

In the rest of this section, some results obtained from implementing the neural net-
work in GO will be described. Since the neural network treats the Dreicer generation
mechanism, a case similar to the TEXTOR tokamak where the Dreicer generation is the
dominant source of runaways is studied. The parameters of the TEXTOR-tokamak are
given in Appendix A. In its present state, the neural network can only handle temperatures
between 100 eV and 10 eV and therefore a flat final temperature profile with a tempera-
ture of 10 eV is assumed. For temperatures above 100 eV, the expression in Eq. (3.1) is
used. The Dreicer generation mechanism does not get started until the thermal quench is
close to finished, so this should have a very small effect on the result.2 Once the Dreicer
generation gets started, however, it takes place over a timescale comparable to the rise
in the electric field. If the Dreicer generated current is large enough to have a significant
effect on the electric field, the interaction between the Dreicer generation and electric field
during the end of a thermal quench must, therefore, be resolved. This requires a non-zero
thermal quench time. Therefore, an exponential drop time scale of t0 = 0.5 ms is used.
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Figure 4.1: a) Runaway current (red) and total current (blue) for a fully ionised plasma.
b) Runaway current (red) and total current (blue) with an argon impurity density of half the
deuterium density. c) Dreicer current (blue) and avalanche current (red) with an argon impurity
density of half the deuterium density. Solid lines indicate results using neural network, dashed
lines using the original Dreicer formula.

1These kinds of CODE simulations can take on the order of 10−1 s to run, while the neural network
takes 10−6 s.

2Until the thermal quench is close to finished the current is approximately constant. Since the initial
current is ohmic, it is given by JΩ = σE ∝ T 3/2E, which, for a constant JΩ gives E ∝ T−3/2. Dreicer
generation is very sensitive to E/ED, where ED ∝ T−1. This gives that E/ED ∝ T−1/2 so that the
Dreicer generation will be small compared to its maximum before the end of thermal quench.
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As a benchmark, a simulation without any partially ionised impurities was performed,
where the neural network and the formula in Eq. (3.1) should agree well.3 The temporal
evolution of the current for such a simulation is shown in Fig. 4.1a. The results obtained
with the neural network agree well with the results obtained with Eq. (3.1). In Fig. 4.1c,
the current evolution from a simulation with an argon impurity density of half the deu-
terium background density is shown. Figure 4.1b shows the runaway current generated by
the Dreicer and avalanche mechanisms separately (hot-tail generation is negligible). The
maximum initial temperature is 1.3 keV, meaning that the temperature will be lower than
100 eV at all radii after a time ln (1290/90)t0 ≈ 2.7t0. In all simulations, no significant
runaway current is generated within the first 1.5 ms (corresponding to 3t0), confirming
the validity of the approximation.

In the case with an argon density present, the neural network gives less than half
the Dreicer current obtained with Eq. (3.1). The lower Dreicer current also results in a
lower avalanche current so that the total runaway current is about a third of the runaway
current without the neural network. In this case, the Dreicer current is large enough to
have a significant influence on the electric field. This means that a change in the Dreicer
current will be counteracted by a change in the electric field which dampens the change in
the Dreicer current. Therefore, it is possible that the effect can be even more significant
in situations where the Dreicer current has a smaller effect on the electric field.

4.2 Avalanche Mechanism Model with Impurities

As described in Section 2.5.2, once an initial runaway electron population is established,
this population is amplified by the avalanche effect. How this mechanism is affected by
the presence of partially ionised impurities has been addressed in [23]–[26]. In this section,
the avalanche model in GO is improved to take effects of partially ionised impurities into
account, and the improvements are investigated in ITER-like scenarios.

An increase in the electron density increases both the electron drag force and the
number of target particles for the avalanche mechanism, but the balance between these
two effects is different for free and bound electrons [26]. In a fully ionised plasma, these
effects cancel each other at high electric fields, but when the electric field becomes lower,
the increased drag force causes a net decrease in the avalanche runaway generation.4
As can be seen in Eq. (3.2), the avalanche growth rate also decreases as a function of
the effective ion charge. According to previous calculations, it therefore seemed that a
mitigation system based on gas injections would suppress the avalanche growth rate [27].
If bound electrons are included, however, these effects no longer cancel each other at high
electric fields. The partially ionised impurities make the avalanche growth rate increase
stronger with the electric field than in a fully ionised plasma, as shown in Fig. 4.2. For
low electric fields, the avalanche growth rate is lower than in a fully ionised plasma, but
for electric fields typical for a tokamak disruption, the avalanche runaway generation is
significantly increased. Such an increase in the avalanche growth rate can have a dramatic
effect on the final runaway current.

3They are not expected to agree exactly since Eq. (3.1) is not an exact steady state solution.
4More specifically, the avalanche growth rate is independent of the electron density in a fully ionised

plasma as long as the electric field is much larger than the critical electric field Ec given in equation
Eq. (2.7)
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4.2.1 Implementation and Simulation Result

To investigate the effect of the recently derived avalanche growth rate, the results from
[26] were implemented in GO. The updated avalanche growth rate is given by

Γ :=
ṅrun

nrun

=
e

mec ln Λc

ntot
e

nfree
e

E|| − Eeff
c√

4 + νS(p?)νD(p?)
. (4.1)

Here, ln Λc ≈ 14.6 + 0.5 ln (TeV/ne20) is the relativistic Coulomb logarithm where TeV is
the electron temperature in eV and ne20 is the free electron density in units of 1020 m−3.
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Figure 4.2: Avalanche growth rate, Γ, as a
function of E/Ec. Calculated both widh the
old formula Eq. (3.2), as well as the updated
avalanche growth rate given by Eq. (4.1). The
range of E/Ec is representative for ITER disrup-
tion simulations with GO. A density of 1020 m−3

is assumed for both deuterium and argon respec-
tively, as well as a temperature of 5 eV.

The effective critical electric field Eeff
c is

a more accurate calculation of the lowest
electric field for which runaways can be cre-
ated, calculated according to [24]. In con-
trast to the expression in Eq. (2.7), the ef-
fect of partially ionised impurities and en-
ergy losses due to bremsstrahlung and syn-
chrotron radiation are taken into account
here. Finally, νS and νD are the electron
slowing down frequency and deflection fre-
quency, respectively. These are normalised
to 1/τc, where τc = 4πε2

0m
2
ec

3/(nee
4 ln Λc)

is the relativistic electron collision time
with the energy-dependent Coulomb log-
arithm. The momentum p? is a rep-
resentative momentum at which νS and
νD are calculated, which is defined as
p? = 4

√
νS(p?)νD(p?)/

√
max (E||, Eeff

c )/Ec.
Since the frequencies νS and νD are rather
involved functions of momentum and p? is
only defined implicitly, p? is calculated nu-
merically.

The implemented avalanche calculations were tested in ITER-like scenarios. Details
of the parameters for ITER are given in Appendix A. The magnitude of the runaway
electron seed varies depending on e.g. how short the thermal quench is, which determines
the efficiency of the hot tail mechanism. Therefore, the effect of the avalanche mechanism
is isolated by making the seed a free parameter to be scanned over. The heat transport
during a disruption is also not completely understood [7]. For simplicity, the studied
scenarios are therefore chosen to have an instantaneous drop in temperature and a flat,
constant post-disruption temperature profile. This is justified in this case, since the
avalanche takes place over a much longer time scale than the thermal quench. The seed
is given as input, and thus not affected by the thermal development. Losses of runaways
are neglected, corresponding to a worst-case scenario.

The impurity density profile is assumed to be similar to the background plasma density
profile, and the distribution of density over the different ionisation states is estimated by
assuming equilibrium between ionisation and recombination5 rates for all charge states.

5Recombination is the reverse of the ionisation process.
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These rates are calculated by interpolating data from the ADAS database [28]. It can
be shown that this equilibrium is established over a timescale of less than 10 ms, which
is significantly shorter than the current quench times relevant for ITER that should be
between 50 ms and 150 ms [29].
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Figure 4.3: Final runaway current as a function of nseed and nAr/nD. a) T = 5 eV and
nD = nD,0. b) T = 5 eV and nD = 11nD,0. c) T = 10 eV and nD = nD,0.

Figure 4.3a shows the final runaway current as a function of the seed density nseed,
the ratio of argon impurity density nAr and deuterium density nD. The temperature
is chosen to a typical post-disruption value of 5 eV. Figure 4.3b shows a similar scan
with an extra deuterium injection nD,inj = 10nD,0 where nD,0 is the initial deuterium
density, so that the total deuterium density is nD = 11nD,0. A similar scenario with the
temperature changed to 10 eV is shown in Fig. 4.3c. In the investigated cases, the final
runaway current is approximately logarithmically sensitive to the seed when the seed
is big enough. The reason for this weak dependence is that when the increase in the
runaway current becomes comparable to the decay rate of the ohmic current, the electric
field is reduced. This, in turn, reduces the avalanche growth rate. The dependence on
nAr/nD is quite weak for nAr/nD . 10−2 and for nAr/nD & 10−1, but is stronger in
between. The region 10−2 < nAr/nD < 10−1 roughly corresponds to where the number
of electrons contributed by the argon (including bound electrons) is comparable to the
number of electrons contributed by the deuterium. This is the region where ntot

e /nfree
e

changes significantly. For the highest nAr/nD included in the scan, a decrease in the
runaway current as a function of nAr/nD was seen. This happens because the effective
critical electric field becomes larger and terminates the avalanche at an earlier stage of
the current quench.

In the worst-case scenario, a seed density of 10−2 m−3 is enough to result in a final
runaway current of about 6 MA. Such a seed density corresponds to about 10 runaway
electrons in the whole volume of ITER. If an argon impurity contributes significantly to
the electron density, this scan indicates that the density must be many times larger than
the initial deuterium density or some substantial loss mechanism of runaway electrons
must be present to avoid an unacceptably high runaway current. In reality, it is quite
problematic to assimilate such high impurity densities in the plasma sufficiently fast [7].
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For lower impurity densities, the final runaway current becomes larger than the desired
maximal runaway current of 2 MA when the impurity density becomes larger than about
nD/30 even for a seed density of 10−2 m−3 in all three investigated scenarios. Therefore,
the results suggest that impurity densities higher than nD/30 should be avoided.

4.2.2 Relevance for Disruption Mitigation

Indications from the results concerning the possibility to mitigate disruptions with massive
gas injections are now discussed. To be able to do this, the dependence of the timescales
for the current quench and thermal energy loss by radiation on the amount of injected
argon and deuterium is of interest. Calculating these timescales accurately is a very
complicated problem, but they can still be estimated with a rather simple model. These
estimates are then discussed in the context of the limitations on the injected impurity
densities set by the runaway avalanche.

First, the radiation loss timescale is estimated. The total initial thermal energy con-
tributed by both the electrons and the background plasma is given by Eth = 3ne,0T0,
with ne,0 being the initial electron density and T0 the initial plasma temperature. If line
radiation is the dominant energy loss mechanism, as is desirable from a disruption mitiga-
tion perspective, the loss effect per unit volume is given by Prad =

∑
nineLi(ne, Te). The

summation is over all ionisation states of all ion types and the coefficient Li is calculated
by interpolating data from the ADAS database [28]. By assuming the same equilibrium
as in Section 4.2.1, the distribution of density over different ionisation states is calculated.
A representative temperature, at which Li and the distribution of ionisation states are
calculated, is taken to be the temperature obtained if the initial thermal energy is dis-
tributed equally over all species present in the plasma after the injection. The radiation
loss timescale is then calculated as trad = Eth/Prad. A contour plot of trad as a function
of injected argon and deuterium density is shown in Fig. 4.4a.

The current quench time scale is now estimated, assuming a cylindrical plasma with
constant conductivity. For simplicity, the effect of the runaway current on the electric field
is also neglected. In this case it can be shown that the current will decay exponentially
such that it decreases by a factor e−1 over a timescale tcq = σµ0a

2/x2
1 [26]. Here, x1 ≈ 2.4

is the first zero of zeroth Bessel function of the first kind. Since σ ∝ T 3/2 as described
in Section 2.4.4, this timescale is mostly determined by the post-disruption temperature.
This temperature is estimated by assuming equilibrium between line radiation and ohmic
heating. The ohmic heating effect per unit volume is given by Pohm = J2/σ. The current
density used when calculating the ohmic heating effect is determined by dividing the total
initial plasma current by the cross-section area of the tokamak. Setting Pohm equal to Prad

calculated as earlier, solving numerically for T2 and inserting in the expression for tcq gives
the result shown in Fig. 4.4b.

In Fig. 4.4a and Fig. 4.4b, a solid white line shows the boundary of nAr/nD = 1/30
where the avalanche mechanism was observed to make an unacceptable runaway current
unavoidable. In Fig. 4.4b, a white and a black solid contour line show the desired limits
within which tcq should be to get an acceptable current quench time. To get a total
current quench time between 50 ms and 150 ms, tcq should be between 22 ms and 66 ms
[26], [29]. From this model, the densities required to get the current quench time within a
desirable range does not seem to be very limited by the restriction caused by the avalanche
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Figure 4.4: Estimate of (a) trad and (b) tcq as a function of injected argon and deuterium
density. A line marks the smallest argon density that was observed to result in an unacceptable
runaway current. Thick lines in (b) show the limiting cases for acceptable current quench time.

mechanism. Without any deuterium injection, however, one would have to be very close
to the boundary according to this model, and since this model is rather crude it might
still be necessary to inject some amount of deuterium.

The time it takes to radiate away the thermal energy is much more limited. As
mentioned in Section 2.6, the time from the detection of an upcoming disruption to the
end of an unmitigated disruption is expected to be about 20 ms in ITER. Depending on
how quickly the mitigation system will be able to start the controlled thermal quench,
trad might have to be as short as a few milliseconds. To achieve this, Fig. 4.4b shows that
an argon density comparable to the initial deuterium density is needed. The amount of
deuterium that needs to be injected to dampen the runaway avalanche would then have
to be of the order of ten times the initial deuterium density. Such an amount of injected
deuterium would probably be very problematic to assimilate in the short time required
[7]. What is also noteworthy is that this impurity density is about an order of magnitude
larger than what is estimated to give an acceptable current quench time.
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Chapter 5

Coupled Position and
Momentum-Space Modelling

To properly simulate runaway generation, simulation of the full phase-space must be done.
As noted before, this is computationally heavy. Therefore, we couple the momentum-space
dynamics calculated in CODE, to the position space dynamics calculated in GO. First,
the full method is presented in Section 5.1, later results from simulations using parameters
from the TEXTOR tokamak are presented in Section 5.2. This is followed by a numerical
efficiency analysis of the numerical tools in Section 5.3.

5.1 GO+CODE

GO+CODE is a hybrid fluid-kinetic solver that couples GO described in Section 3.1 with
CODE described in Section 3.2. CODE is used to calculate the runaway current instead
of the approximate growth rates used in GO. Each radial point in GO therefore has
one separate instance of CODE which evolves the distribution function in momentum
space and is used to calculate the runaway current. This makes it possible to avoid
the simplification Jrun = nrunqec. However, if the electric field falls below the critical
electric field, the number of runaway electrons is zero even if there still might be a large
current carried by relativistic electrons. Therefore, the current calculated by CODE that
is coupled to GO is the current carried by electrons with a speed higher than a certain
threshold chosen to 0.25c. It should also be noted that even though there is a density
gradient, the cross term v · ∂fk/∂x in Eq. (2.1) is still disregarded for simplicity.

5.2 Simulation Results

To begin with, a demonstration of the ability to calculate the full evolution of currents and
electric field as well as the distribution function is shown. The illustrated case is similar
to the TEXTOR tokamak, assuming an exponential temperature decay with t0 = 1.5 ms.
The evolution of the temperature is shown in Fig. 5.1 for reference. It also shows the
evolution of the currents and electric field. As explained in Section 2.5.1, the decrease
in temperature gives rise to an increase in the electric field. This, in turn, gives rise to
a runaway current, which starts to grow significantly after about 4 ms. The evolution
of the distribution function in the centre of the tokamak is shown in Fig. 5.2 at 50 %,
60 %, and 70 % of the total simulation time. This corresponds to t = 5.4 ms, t = 6.6 ms
and t = 7.7 ms respectively, corresponding to when the runaway current has just been
generated. Here, the runaway population can be seen in the form of a tail accelerating to
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Figure 5.1: Evolution of temperature (left), electric field (middle) and current (right) from a
simulation of a TEXTOR disruption with GO+CODE. The solid and dashed lines indicate total
and runaway current respectively.
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Figure 5.2: Evolution of the distribution function in the centre of the tokamak from a simulation
of a TEXTOR disruption with GO+CODE. Snapshots are taken at 50 %, 60 %, and 70 % of the
total simulation time, corresponding to t = 5.4 ms, t = 6.6 ms and t = 7.7 ms respectively. The
distribution function is normalised to the maximum value of the distribution in the first time
step. Note the logarithmic colour scale.

higher and higher momentum. Some oscillating features due to numerical noise can also
be seen, but at several orders of magnitude lower amplitude than the main features of the
distribution function.

5.2.1 Fluid Model Comparison

In the initial pilot project of creating a GO and CODE coupling [12], the runaway current
was found to be somewhat larger compared to using GO alone. Since then, various
improvements have been made to CODE, including an update of the collision operator,
which are beyond the scope of this thesis. Because of the updates, and because the full
reason for the discrepancy was not understood at the time, the difference between GO
and GO+CODE was examined again.

As in [12], TEXTOR parameters are used, the details of which can be seen in Ap-
pendix A. An exponential temperature decay is assumed with a final temperature of 5 eV
in the centre decreasing at a constant rate to 1 eV at the edge, and a time independent

25



density profile. A scan over the thermal quench time1 is performed.
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Figure 5.3: Calculated runaway current in
TEXTOR assuming an exponential thermal
quench using GO and GO+CODE. Results us-
ing an older version of GO+CODE, first shown
in [12], are included for reference.

The final runaway current found using
GO and GO+CODE, respectively, for the
investigated thermal quench times is shown
in Fig. 5.3. While the current found by
GO+CODE is about the same as in [12] for
the shortest thermal quench times, the dif-
ference to GO quickly drops between about
t0 = 0.5 ms and t0 = 1.5 ms to a final value
of around 15 % higher than GO. For even
longer thermal quench times there is no data
from the previous study, but the difference
seems to stay somewhat constant at 15 %.

The discrepancies would be expected at
shorter time scales, as this is where fluid
models, which uses steady-state growth rate
models, might not be valid. Both hot-
tail and steady state approximations for the
Dreicer growth rate are explanations of the
discrepancy in the total runaway current.
In Fig. 5.4 the differences in the runaway
current between kinetic and fluid models can be seen. As seen in the kinetic model (solid
lines), the runaway generation starts earlier than in the fluid model (dashed lines). As
explained in Section 4.1, the Dreicer generation starts at the end of the thermal quench
whereas hot-tail generation occurs during the thermal quench. The earlier start time of
the generation therefore implies that the effect from hot-tail is too small in the analytical
model implemented in GO. This is also observed in [11], where the analytical model was
compared with numerical simulations for a constant electric field without spatial depen-
dence, and a discrepancy of approximately an order of magnitude was found. In this case,
the electric field is calculated self-consistently with the development of the plasma current
with radial spatial dependency. The larger hot-tail leads to more seed electrons and as
shown in Fig. 4.3 the seed will be multiplied through the avalanche mechanism and even
small differences can have a substantial effect on the final runaway current.

The effect of hot-tail should be lower for slower thermal quench times. This can be seen
in Fig. 5.4 where the runaway generation starts somewhat faster in kinetic models than
fluid models for the 0.5 ms graph whereas they start at the same time in the 5 ms graph.
It also seems that a discrepancy is created even after the thermal quench, which implies a
difference in either Dreicer generation, avalanche generation or both. To examine which
of hot-tail and other growth rates affects the final results the most, further studies should
be done where the different growth rates are isolated in GO+CODE. This identification
can determine where improvements in present fluid models should be made. These im-
provements are important in order to obtain accurate results from the fluid models, which
run substantially faster than kinetic models.

The persisting difference at longer thermal quench time is unexpected. One explana-
tion could be that hot-tail is still important at a thermal quench time of 5 ms, or that

1The thermal quench time, t0, is used as defined in Section 3.1
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Figure 5.4: Time evolution of runaway current during thermal quenches of 0.5 ms (left) and
5 ms (right) using GO and GO+CODE respectively. The dotted line divides the runaway current
calculated by GO into Dreicer and avalanche generation. The hot-tail portion of the current in
GO was below 1 % for both simulations and is therefore not illustrated.

other approximations in growth rates in GO is still not valid at 5 ms timescale. A more
likely explanation is the chosen boundary for fast electrons in kinetic modelling. If a too
high threshold is used, an increased electric field could be created due to the electric field
not reacting to the accelerated electrons until the electrons reach the threshold. Then,
electrons are accelerated without dampening the electric field, increasing the runaway
generation. This can explain the constant difference at 15 %. By lowering the thresh-
old the discrepancy could possibly be lowered. However, too low of a threshold could
mean that a large portion of the ohmic current would be double-counted since there is no
distinction between ohmic current and other currents in kinetic modelling.

Therefore, to avoid this problem, the electric field should be modelled with the to-
tal current calculated from kinetic simulations. In practice, this would require solving
Eq. (2.8) for the electric field. With the current’s dependence of the electric field written
out explicitly, this reads

∇2E =
∂

∂t
(µ0J(E)).

Observing that the only time derivative present is that of the current, it can be concluded
that to solve for the electric field in time, either the inverse of the current operator needs
to be estimated, or some time expansion of the Laplacian operator must be made. Since
the separation between ohmic and fast current allows for the numerical stable Crank-
Nicolson scheme to be used, total current modelling was not performed in this study but
should instead be addressed in further studies.

5.3 Resolution and Convergence in GO+CODE

The resolution of numerical simulations affects both the run time and the accuracy of
the results. Simulations with high resolution take a long time to run but give the best
results. Conversely, simulations with low resolution can run quickly, but might not give
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accurate results. Some of the simulations presented in Fig. 5.3 took up to several days to
run. It therefore becomes necessary to perform benchmarks and convergence tests with
respect to resolution. These benchmarks give information about how well the resolution
parameters were chosen for a particular physical scenario. Particular emphasis was placed
on the importance of resolution parameters in CODE when used together with GO.

5.3.1 Structure of benchmarks

The benchmarks were designed as parameter scans. A physical scenario was simulated
with high numerical resolution, where the run time and result of the simulation were
recorded. The resolution was then lowered and the process repeated. The same scenario
was simulated several times with continuously decreasing resolution. After a specified
number of repetitions, the result of each simulation was compared to the simulation with
the highest resolution. However, at the highest resolution it is important to manually
confirm that the accuracy barely increases with increasing resolution. This indicates that
the solution has converged. The relative error in the result of each simulation could there-
fore be described as a function of numerical resolution. The relative error was computed
for the total current density and the runaway current density.

Several resolution parameters were identified that could affect the results and the
variables Nξ, Ny, and ∆t were chosen for further study. These three parameters were
suspected to have a major impact on both accuracy and run time. Two additional pa-
rameters were instead suspected to only affect simulation accuracy, leaving the run time
unaffected. These are explained in more detail in Appendix B.3.

The first benchmarks were performed on CODE alone, corresponding to a single GO
time step in GO+CODE. This was done in order to get an intuitive understanding of
what the different resolution parameters do and how they affect the outcome. The results
of a GO+CODE simulation of the TEXTOR tokamak were then used to study the choice
of resolution made by GO+CODE. Emphasis in this benchmark was placed on ensuring
the CODE results converge before continuing with the next step in the GO simulation.
A secondary objective was minimising run time.

Since the GO+CODE simulations depend on a large number of previous time steps,
it was necessary to study the effects of error propagation. A benchmark was made to
study a single radial grid point throughout the entire time-evolution. This test shows
how errors in the beginning can affect the end result. The findings of the benchmarks
were then used to write a function that automatically chooses resolution parameters for
CODE. This function was then implemented in GO+CODE and the TEXTOR simulation
was performed again. Finally, differences compared to previous simulations of the same
scenario were analysed.

5.3.2 Benchmark and Convergence Tests for CODE

The parameters Nξ and Ny were the first parameters to be studied in the CODE part of
GO+CODE. It was found that the relative error decreases continuously with increasing
Ny. The lowest required value for the resolution parameter Ny in a typical CODE scenario
is generally a few hundred to several hundred. Increasing the resolution further leads
to diminishing accuracy improvements. It was also found that the parameter Nξ only
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seems to affect the resolution up to a certain point, after which accuracy barely increases.
Sufficient accuracy was often achieved with a value of Nξ of roughly 6 to 8. The two
resolution parameters do not seem to interact noticeably. Additionally, the simulation run
time was found to be approximately proportional to (NξNy)

2. This dependence implies
that a small decrease in resolution can lead to a significant reduction in simulation run
time. A more detailed description of this benchmark can be found in Appendix B.1.

The third resolution parameter studied was the time step ∆t. Instead of varying ∆t
directly, the number of time steps, tmax/∆t, was studied, where tmax is the maximum
time of the scenario. It was found that the same TEXTOR scenario that was studied
earlier required more than 100 time steps in the chosen time frame in order to have a
relative error of less than 1 %. This is equivalent of having a ∆t value of 5 or less thermal
collision times. It was also found that the simulation run time scaled linearly with the
number of time steps, with a constant offset. This indicates that there is some room for
optimisation of the simulation run time, but not as much as the parameters Nξ and Ny

have. For additional details about this benchmark, refer to Appendix B.2.

5.3.3 Benchmark and Convergence Tests for GO+CODE

Benchmarks on the CODE part of GO+CODE can indicate how GO+CODE will perform.
However, the GO part of GO+CODE must be included in the benchmarks in order to
study a more useful scenario. The benchmarks in the previous section studied the CODE
simulation in a single GO time step. The following section studies how errors propagate
through the simulation when several GO time steps, with their corresponding CODE
simulations, are taken.

It was found that error propagation is not a significant issue in GO+CODE as long as
sufficient resolution is employed in CODE. Sufficient resolution in GO is, however, also
required. Increasing resolution further in CODE will not affect the results noticeably. The
current version of GO+CODE increases the values of Nξ and Ny continuously as time
progresses to compensate for the grid extensions that are performed when the particle
momentum increases. However, the resolution turned out to become unnecessarily large
in the later parts of the simulation. A few exceptions were nonetheless identified. It
appears that Ny should be slightly greater in the beginning, but can be significantly
reduced in the end compared to previous versions of GO+CODE. Nξ can most of the
time be chosen to take small values, i.e. less than 10, in regions with a weak electric field.
This value must be increased when stronger electric fields are considered.

The parameters Nξ and Ny controlled a large portion of the run time in GO+CODE.
The parameter ∆t did, however, still have a significant effect on the accuracy. GO+CODE
used only a single time step for CODE in the first GO steps. A significant difference of
more than 8 % was observed in the final current density when the GO+CODE value of
∆t was compared to similar simulations performed with a greater number of time steps,
i.e. smaller ∆t. Since smaller time steps increase resolution, it is probable that the new
parameters give a more accurate result.

A few additional observations were made regarding the scaling of the resolution re-
quirements. It was found that the required value of Nξ scaled approximately with E.
Furthermore, it was found that the resolution requirement for Ny seemed to scale approx-
imately with the quantity E/ED. The value of ∆t did not seem to require scaling and
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was chosen to give good overall convergence in all parts of the simulation. The value of
tmax in CODE is equal to the GO time step.

For simplicity, the selection algorithm for Nξ and Ny was chosen to be a linear function
of E and E/ED, respectively. The constant offsets were chosen in order to guarantee that
a minimum resolution was employed. Values for the coefficients were found by correlating
the required resolution to the variables E and E/ED at certain points in the simulation.
The required resolution was found by manually optimising the resolution in different areas
of a GO+CODE simulation. The values were then adjusted to achieve good simulation
run times without sacrificing accuracy. Finally, the coefficient values were increased to
safeguard against poor resolution. The final model can then be described by

Nξ = round

(
4.5

E

1 V/m
+ 10

)
, (5.1)

Ny = round

(
7000

E

ED

+ 300

)
, (5.2)

∆t =
tmax

100
. (5.3)

Equations (5.1) and (5.2) feature rounding in order to only provide integer values for the
resolution. Note that E/ED comes from the previous CODE result in the same radial
grid point. The other values, E and tmax, are taken from the parameters that are about
to be used in the current simulation.

This choice of parameters was implemented in GO+CODE. The increase in simulation
run time due to the increased resolution in the beginning was more than offset by the
reduction of resolution in the end. This led to an overall decrease in the simulation time
of the investigated TEXTOR scenario from slightly over six and a half hours to just
under 30 minutes, a factor 14 decrease. Furthermore, the reduction in resolution led to a
reduction in peak memory usage, as reported by GO+CODE, from 5341 MiB to 989 MiB.
This corresponds to a reduction in memory usage by a factor 5. The benchmarks were
performed with MATLAB R2018b on an Intel i5-8400 CPU running at 3.8 GHz with
16 GiB RAM.

The new algorithm for choosing resolution parameters include increased resolution
in parts of the simulation that previously suffered from poor resolution. This includes
increased Ny and number of time steps in the early parts of the simulation. It might
therefore be beneficial to repeat previously performed GO+CODE simulations to verify if
poor resolution might have given erroneous results. Note that the algorithm was developed
using the TEXTOR tokamak as a reference. Other tokamaks or scenarios that differ
significantly from the studied scenario might need slightly different models.

The increased numerical efficiency that follows from the new selection algorithm means
that a given simulation can be completed more quickly and with less computational re-
sources than before. It also means that more complex scenarios can be simulated on
current computational hardware. The new selection algorithm takes an important step
towards the goal of simulating the ITER tokamak in GO+CODE. Simulating ITER sce-
narios require significantly more computational power but the new selection algorithm
could, when properly adjusted to ITER, decrease those demands considerably.
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Chapter 6

Conclusion

In this thesis, important steps have been taken towards accurate modelling of the runaway
dynamics in disruptions by updating and testing the numerical tools to include the effect
of partially ionised impurities in the runaway generation rate. This includes both an
implementation of a neural network to address Dreicer generation and an improved model
for the avalanche generation that includes the effect of impurities. This is relevant since
disruption mitigation in tokamaks can be done by injecting impurities in the plasma.

The partially ionised impurities were observed to have a great impact on both Dreicer
and avalanche runaway generation. Their presence generally decreases the Dreicer run-
away generation, but a drastic increase in the avalanche generation was observed. Results
from avalanche generation indicate that even an extremely small population of initial run-
aways could lead to a runaway current of extreme magnitude in the presence of certain
densities of partially ionised impurities. Therefore, in most cases, the final result will be
an increase in the number of runaways.

Although more accurate models were implemented in the self-consistent fluid model,
their validity on shorter timescales, characteristic of a sudden cooling of the plasma in
a tokamak disruption, could be questioned. To ensure that present fluid models are
valid and to find where discrepancies arise, a kinetic model was used. This model was
compared with fluid modelling in a fully ionised plasma. The results of kinetic modelling
of the runaway dynamics did not completely agree with the results of fluid modelling, but
they did seem to converge towards each other with a constant offset in the case of slow
temperature decay. The convergence is to be expected as fluid models handle effects on
longer time scales, while kinetic models also cover short time scale effects. A simplified
version of the kinetic modelling was used, which could be the cause of the discrepancy
to the fluid model. Investigations of what exactly causes the discrepancy are necessary
to develop accurate models. These are outside the scope of this thesis and are left for
further studies.

The numerical efficiency of the kinetic model has also been investigated. Through
optimisation of internal numerical parameters a drastic decrease in run time, without
compromising accuracy, has been achieved. The decreased run time means that more
elaborate models could be implemented to further increase the accuracy of simulations.

All of the above improvements contribute to the accurate predictions needed when
designing a disruption mitigation system in future tokamaks. To be able to mitigate
disruptions in a way where the tokamak takes close to zero damage is a great challenge to
overcome and would be a crucial step towards a fusion energy power plant. A successful
fusion power plant would, in turn, be a giant leap towards solving the ever-growing demand
for an environmentally friendly energy source.
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Appendix A

Parameters for selected tokamaks

Dimensions and plasma parameters used for the simulations of different tokamaks are
given below. The parameters are the same as in previous publications using GO [12], [20].

Table A.1: Tokamak and plasma parameters for tokamaks used in simulations.

Tokamak or plasma parameter ITER TEXTOR
Tokamak major radius, R [m] 6.2 1.8
Plasma minor radius, a [m] 2 0.4
Tokamak conducting wall radius1, b [m] 2.15 0.6
Initial plasma current I0 [MA] 15 0.305
Magnetic field, B [T] 5.3 2.1
Coulomb logarithm, ln Λ 17 16
Density See Fig. A.1a See Fig. A.2a
Initial temperature See Fig. A.1b See Fig. A.2b
Initial current profile See Fig. A.1c See Fig. A.2c
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Figure A.1: Initial radial profiles of (a) density (b) temperature and (c) current for ITER
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Figure A.2: Initial radial profiles of (a) density and (b) temperature of TEXTOR

1Used for setting a boundary condition for the electric field
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Appendix B

Tests of GO+CODE Convergence

The following sections provide further details to the resolution and convergence tests
mentioned in Section 5.3.

B.1 Benchmark of Nξ and Ny for CODE

This section presents a benchmark performed on a single CODE scenario. The relative
error in the runaway current density as a function of resolution parameters Nξ and Ny

is presented in Fig. B.1. The graph indicates that increasing values of Nξ increases
accuracy, as can be expected. However, accuracy no longer increases appreciably once
Nξ has reached a value of approximately 6 to 8. This suggests that Nξ can be chosen to
be the value at which accuracy barely increases anymore. The parameter Ny seems to
affect accuracy more continuously. It can be seen from the graph that accuracy improves
gradually with increasing Ny. The relative error was through curve fitting found to be
approximately proportional to 1/N3

y . Note the direction of the Ny axis. An observation
that can be made from the graph is that the parameters do not seem to interact noticeably.
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Figure B.1: Relative error for the runaway
current density as a function of resolution pa-
rameters Nξ and Ny. Increasing resolution
leads to diminishing accuracy improvements.
Note the direction of the Ny axis.
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Figure B.2: Simulation run time as a func-
tion of the product Nξ · Ny. Simulation run
time is approximately proportional to (Nξ ·
Ny)

2.

During a simulation, CODE performs one or more matrix inversions on a matrix with
dimensions Nξ · Ny. It is therefore possible to extract information about the simulation
by regarding the product Nξ · Ny. Fig. B.2 shows simulation run time as a function of
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Nξ · Ny. It can be shown by curve fitting that the simulation run time is approximately
proportional to (Nξ ·Ny)

2. There are, however, artefacts in the figure that indicate that
other factors affect the outcome. One of these is that there are sections in which run
time increases more rapidly. This can be seen as small divergences that break off from
the main body, especially between values of 2000 to 4000 for Nξ ·Ny.

The scenario simulated during this benchmark had the following parameters: T =
500 eV, n = 5 · 1019 m−3, Z = 1, E = 1 V/m, B = 2 T, ∆t = 1, tmax = 500, ymax = 50.
Avalanche sources were turned off. All other parameters were set to their default values.
The simulation used a polynomial grid spacing for the y grid. This increases resolution
of the thermal bulk of electrons while simultaneously providing coverage for high-energy
electrons.

B.2 Benchmark of Time Step Parameter ∆t for CODE

This benchmark evaluates how the size of the time step parameter ∆t affects run time and
relative error. The same physical scenario was used as in the previous section but with
Nξ = 25 and Ny = 250. A slightly different metric that can be used when investigating
the time step length is the number of time steps that have to be taken. This corresponds
more clearly to the computational complexity since every step in the time-advance has
a similar computational requirement. The results in this section are therefore presented
in terms of number of time steps instead of in terms of ∆t. The number of time steps is
equal to tmax/∆t. It is in other words inversely proportional to the size of the time step.
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Figure B.3: Relative error for the runaway
current density as a function of the number
of time steps. A higher number of time steps
gives a smaller error.
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Figure B.4: Simulation run time as a func-
tion of the number of time steps. Note that the
relationship is linear, with a constant offset.

The results of the benchmark are presented in Fig. B.3 and Fig. B.4. The general
characteristics in Fig. B.3 seem to resemble the behaviour of Ny. The relative error was
through curve fitting determined to be inversely proportional to the number of time steps.
The time dependence is shown to be almost exactly linear, with a constant offset. This
offset is due to other calculations, for example matrix inversion, in the CODE simulation.
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These other calculations are only performed once, hence a constant offset. The rest of the
simulation run time is then made up solely by time-advance calculations.

Fig. B.3 shows that in order for the simulation to converge to the correct value, a large
number of time steps must be taken. The simulation of this scenario seems to require
100 or more time steps in order to achieve relative errors of less than one percent. The
fact that simulation run time scales linearly with the number of time steps leaves some
room for parameter optimisation, although not as much as the parameters Ny and Nξ

did. It is however of great importance to choose a sufficiently large number of time steps
in relation to the rate of change in physical parameters. When the physical parameters
change quickly, a large number of time steps is required. This is equivalent to choosing a
sufficiently small ∆t.

B.3 Study of Parameters ymax and gridParameter

Two additional resolution parameters were studied, as mentioned in Section 5.3.1. These
were the parameters ymax and gridParameter. The parameter ymax describes the number
of grid points in y and gridParameter controls the spacing of the grid according to the
formula y = s2 + gridParameter · s, where gridParameter is a constant and s is a
uniformly spaced variable. Parameter scans similar to those for Nξ, Ny and ∆t were
performed for ymax and gridParameter. As expected, no effect on simulation run time
was observed. It appears that gridParameter does not significantly affect the simulation
results either, as long as values close to the default value are chosen. It appears that
the default choice works well so it will not be investigated further. The parameter ymax

must, however, be chosen with greater care. This parameter must be great enough to
accommodate the entire distribution function f . If it is too small the observed results will
quickly diverge from the correct results. The simulation is not as sensitive when ymax is
chosen to be greater than what is required by f , but ymax cannot be too great or else the
simulation will suffer from the relatively low number of grid points Ny. The parameter
should be chosen to be slightly greater than what is strictly required in order to guarantee
complete coverage of f . It is nevertheless advantageous to choose ymax to be as small as
practically possible in order to increase the coverage of the distribution function. When
chosen correctly, it might be possible to decrease Ny, thereby reducing simulation run
time.
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