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Shot Injected Initial Initial
B Parameters that are (more or less)  number  argon density  temperature

similar in all shots: [bar] [m~?] [keV]

» Magneticfield B=25T # DAr no Teo

» Major radius R =1.65m 35401 0.15 2.6- 10 6.1

» Minor radius a = 0.5m 34149 0.2 3.0-10% 5.7

» Initial current I, = 0.7-0.8 MA gilig 063212 ;g 1812 gg

u Parameters that vary between 34084 033 3.0 10%° 43
shots: 35649  0.39 2.6 10" 6.2

» Injected argon quantity (1 bar, 35650 0.4 2.4.10° 5.3
0.11,300 K < 2.4.102! atoms) 35408 0.5 2.4.-10 6.0

» Initial free electron density 33108 0.73  3.1-10" 7.2

» Initial free electron temperature 31318 09  22-10% 11
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with calculated j;—30.,s- 0.63
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B To do: Improve temperature
evolution estimate.

* where the assumed exponential temperature decay falls to the final temperature without a plateau at a higher calculated equilibrium temperature.
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Summary 12/12

Measured data from AUG shots was used (with some
modification/interpretation):

» On-axis free electron temperature
» On-axis free electron density

Some parameters were estimated/guessed:

» On-axis argon density
» On-axis argon ionization states
» Initial on-axis current density

Momentum distribution and on-axis current density calculated with CODE
Hot-tail and avalanche most important RE generation mechanisms
Calculated on-axis current density scales with measured currentatt=30s
Conclusion: CODE captures important features of RE generation
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