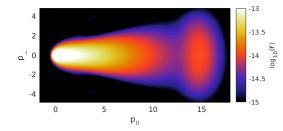


Kinetic modeling of argon-induced disruptions in ASDEX Upgrade

K. Insulander Björk¹

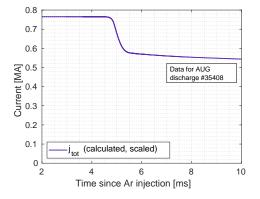
G. Papp², O. Embréus¹, L. Hesslow¹, T. Fülöp¹, O. Vallhagen¹, A. Lier², G. Pautasso², A. Bock², the ASDEX Upgrade Team^{2*} and the EUROfusion MST1 Team[†]

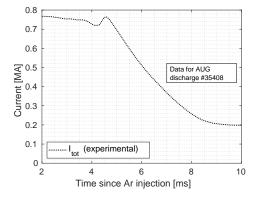
¹Chalmers University of Technology, Gothenburg, Sweden


²Max Planck Institute for Plasma Physics, Garching, Germany

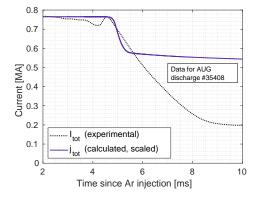
* See author list of "H. Meyer et al. 2019 Nucl. Fusion 59 112014"

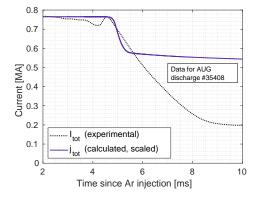
[†]See the author list of "B. Labit et al. 2019 Nucl. Fusion 59 086020"

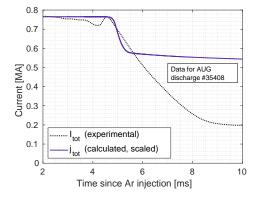


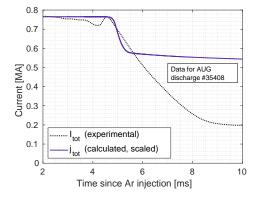


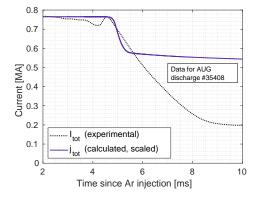
- 1. Argon induced disruptions in AUG
- 2. Temperature data
- 3. Density data
- 4. Current evolution
- 5. Distribution functions
- 6. RE generation rates by different mechanisms
- 7. Comparing model and experiment for 10 shots...
- 8. Summary

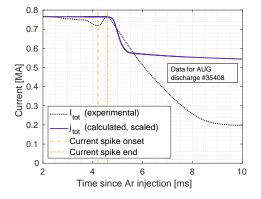

Main take-home messages from REM 2019:


- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes


- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments


- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments
 - Fitting the former with the latter is not so awesome


- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments
 - Fitting the former with the latter is not so awesome
- Main take-home messages from my stay at ASDEX-Upgrade:


- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments
 - Fitting the former with the latter is not so awesome
- Main take-home messages from my stay at ASDEX-Upgrade:
 - ▶ Some things can be measured

- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments
 - Fitting the former with the latter is not so awesome
- Main take-home messages from my stay at ASDEX-Upgrade:
 - ► Some things can be measured
 - Other things can be estimated

- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments
 - Fitting the former with the latter is not so awesome
- Main take-home messages from my stay at ASDEX-Upgrade:
 - ► Some things can be measured
 - Other things can be estimated
 - Most things can only be guessed

- Main take-home messages from REM 2019:
 - ► Theorists make awesome codes
 - Experimentalists make awesome experiments
 - Fitting the former with the latter is not so awesome
- Main take-home messages from my stay at ASDEX-Upgrade:
 - ► Some things can be measured
 - Other things can be estimated
 - Most things can only be guessed
 - Especially so during MHD events...

■ 2D momentum space, 0D real space (present simulations: on-axis)

- 2D momentum space, 0D real space (present simulations: on-axis)
- Runaway electron generation: hot-tail, Dreicer and avalanche

- 2D momentum space, 0D real space (present simulations: on-axis)
- Runaway electron generation: hot-tail, Dreicer and avalanche
- Self-consistent electric field evolution

4/12

- 2D momentum space, 0D real space (present simulations: on-axis)
- Runaway electron generation: hot-tail, Dreicer and avalanche
- Self-consistent electric field evolution
- Collisions: relativistic test particle operator [2,3]

- [2] L. Hesslow, et al.: Journal of Plasma Physics, 85(6), 2019
- [3] B. J. Braams, et al.: Physics of Fluids B: Plasma Physics, 1(7):1355, 1989

- 2D momentum space, 0D real space (present simulations: on-axis)
- Runaway electron generation: hot-tail, Dreicer and avalanche
- Self-consistent electric field evolution
- Collisions: relativistic test particle operator [2,3]
- Screening of partially ionized impurities [4]

- [2] L. Hesslow, et al.: Journal of Plasma Physics, 85(6), 2019
- [3] B. J. Braams, et al.: Physics of Fluids B: Plasma Physics, 1(7):1355, 1989
- [4] L. Hesslow, et al.: Physical Review Letters, 118, 2017

- 2D momentum space, 0D real space (present simulations: on-axis)
- Runaway electron generation: hot-tail, Dreicer and avalanche
- Self-consistent electric field evolution
- Collisions: relativistic test particle operator [2,3]
- Screening of partially ionized impurities [4]
- Radiation losses (synchrotron and Bremsstrahlung)

[2] L. Hesslow, et al.: Journal of Plasma Physics, 85(6), 2019

[4] L. Hesslow, et al.: Physical Review Letters, 118, 2017

^[1] A. Stahl, et al.: Nuclear Fusion, 56(11), 2016

^[3] B. J. Braams, et al.: Physics of Fluids B: Plasma Physics, 1(7):1355, 1989

- 2D momentum space, 0D real space (present simulations: on-axis)
- Runaway electron generation: hot-tail, Dreicer and avalanche
- Self-consistent electric field evolution
- Collisions: relativistic test particle operator [2,3]
- Screening of partially ionized impurities [4]
- Radiation losses (synchrotron and Bremsstrahlung)
- No radial transport or instabilities.

[2] L. Hesslow, et al.: Journal of Plasma Physics, 85(6), 2019

^[1] A. Stahl, et al.: Nuclear Fusion, 56(11), 2016

^[3] B. J. Braams, et al.: Physics of Fluids B: Plasma Physics, 1(7):1355, 1989

^[4] L. Hesslow, et al.: Physical Review Letters, 118, 2017

- Parameters that are (more or less) similar in all shots:
 - ▶ Magnetic field *B* = 2.5 T

- Parameters that are (more or less) similar in all shots:
 - ► Magnetic field B = 2.5 T
 - Major radius R = 1.65 m

- Parameters that are (more or less) similar in all shots:
 - Magnetic field B = 2.5 T
 - Major radius R = 1.65 m
 - ► Minor radius *a* = 0.5 m

- Parameters that are (more or less) similar in all shots:
 - ► Magnetic field B = 2.5 T
 - Major radius R = 1.65 m
 - ► Minor radius *a* = 0.5 m
 - Initial current $I_0 = 0.7-0.8$ MA

	Parameters that are (more or less) similar in all shots:	Shot number
	• Magnetic field $B = 2.5 \text{ T}$	#
	• Major radius $R = 1.65$ m	35401
	Minor radius a = 0.5 m	34149
	• Initial current $I_0 = 0.7-0.8$ MA	34183
	Parameters that vary between	34140
	shots:	34084
	51015.	35649
		35650
		35408
		33108
		31318

	Parameters that are (more or less) similar in all shots:	Shot number	Injected argon [bar]
	• Magnetic field $B = 2.5 \text{ T}$	#	p_{Ar}
	• Major radius $R = 1.65$ m	35401	0.15
	• Minor radius $a = 0.5$ m	34149	0.2
	• Initial current $I_0 = 0.7-0.8$ MA	34183	0.3072
	Parameters that vary between	34140	0.31
	shots:	34084	0.33
		35649	0.39
	 Injected argon quantity (1 bar, 	35650	0.4
	0.1 I, 300 K \iff 2.4 \cdot 10 ²¹ atoms)	35408	0.5
		33108	0.73
		31318	0.9

```
Parameters that are (more or less) num
similar in all shots:

Magnetic field B = 2.5 T #

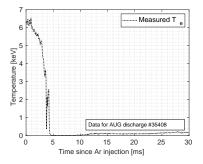
Major radius R = 1.65 m 354

Minor radius a = 0.5 m 341

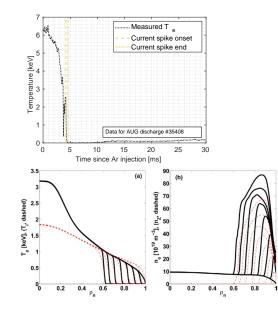
Initial current I_0 = 0.7-0.8 MA 341

Parameters that vary between 341

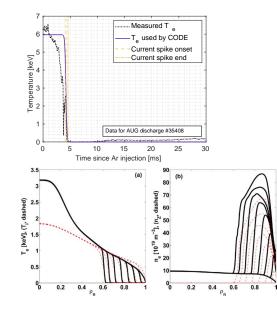
shots: 356
```

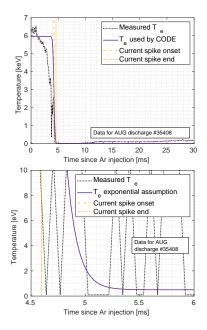

- ► Injected argon quantity (1 bar, 0.1 I, 300 K ⇔ 2.4·10²¹ atoms)
- Initial free electron density

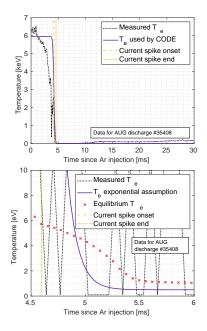
Shot number	Injected argon [bar]	Initial density [m ⁻³]
#	p_{Ar}	n_0
35401	0.15	2.6· 10 ¹⁹
34149	0.2	3.0· 10 ¹⁹
34183	0.3072	2.8· 10 ¹⁹
34140	0.31	2.3· 10 ¹⁹
34084	0.33	3.0· 10 ¹⁹
35649	0.39	2.6· 10 ¹⁹
35650	0.4	2.4· 10 ¹⁹
35408	0.5	2.4· 10 ¹⁹
33108	0.73	$3.1 \cdot 10^{19}$
31318	0.9	2.2· 10 ¹⁹


```
Parameters that are (more or less) similar in all shots:
```

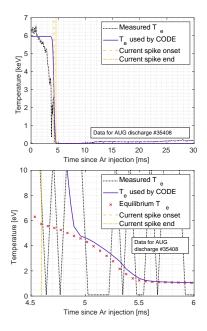
- Magnetic field B = 2.5 T
- Major radius R = 1.65 m
- ► Minor radius *a* = 0.5 m
- Initial current $I_0 = 0.7-0.8$ MA
- Parameters that vary between shots:
 - ► Injected argon quantity (1 bar, 0.1 I, 300 K ⇔ 2.4·10²¹ atoms)
 - ► Initial free electron density
 - ► Initial free electron temperature


Shot number	Injected argon [bar]	Initial density [m ⁻³]	Initial temperature [keV]
#	p_{Ar}	n_0	T_{e0}
35401	0.15	2.6· 10 ¹⁹	6.1
34149	0.2	3.0· 10 ¹⁹	5.7
34183	0.3072	2.8· 10 ¹⁹	5.5
34140	0.31	2.3· 10 ¹⁹	5.8
34084	0.33	3.0· 10 ¹⁹	4.3
35649	0.39	2.6· 10 ¹⁹	6.2
35650	0.4	2.4 \cdot 10 ¹⁹	5.3
35408	0.5	$2.4 \cdot 10^{19}$	6.0
33108	0.73	$3.1 \cdot 10^{19}$	7.2
31318	0.9	2.2 ⋅ 10 ¹⁹	11


■ Free electron temperature measured by ECE


- Free electron temperature measured by ECE
- ECE blocked by high e^- densities on edge \approx 1 ms after injection

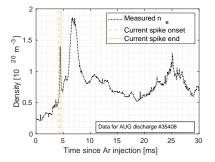
- Free electron temperature measured by ECE
- ECE blocked by high e^- densities on edge \approx 1 ms after injection
- Assume exponential thermal quench


- Free electron temperature measured by ECE
- ECE blocked by high e^- densities on edge \approx 1 ms after injection
- Assume exponential thermal quench
- But what is the final temperature?

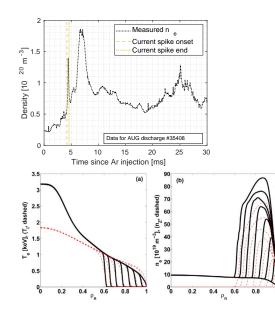
- Free electron temperature measured by ECE
- ECE blocked by high e^- densities on edge \approx 1 ms after injection
- Assume exponential thermal quench
- But what is the final temperature?
- Best guess: Calculate assuming collisional-radiative equilibrium at prevailing D/Ar densities and current density

$$J^2\sigma(T_e, Z_{\text{eff}}(T_e)) = \sum_i n_e(T_e)n_i L_i(T, n_e(T_e))$$

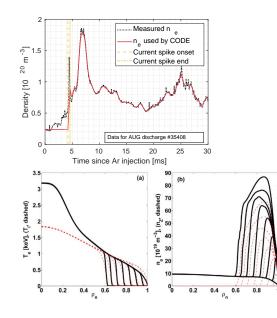
٠

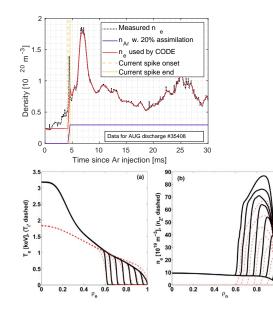


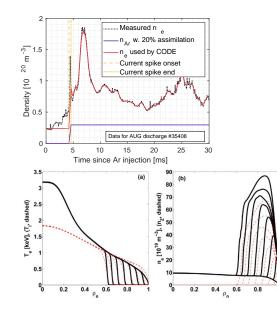
- Free electron temperature measured by ECE
- ECE blocked by high e^- densities on edge \approx 1 ms after injection
- Assume exponential thermal quench
- But what is the final temperature?
- Best guess: Calculate assuming collisional-radiative equilibrium at prevailing D/Ar densities and current density


$$J^2\sigma(T_e, Z_{\text{eff}}(T_e)) = \sum_i n_e(T_e)n_i L_i(T, n_e(T_e))$$

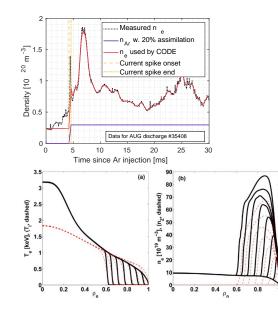
٠




■ Free electron density n_e measured by CO₂ interferometry


- Free electron density n_e measured by CO₂ interferometry
- Initial increase at the plasma edge

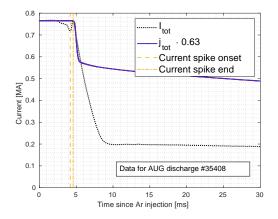
- Free electron density n_e measured by CO₂ interferometry
- Initial increase at the plasma edge
- Density on-axis constant until MHD mixing



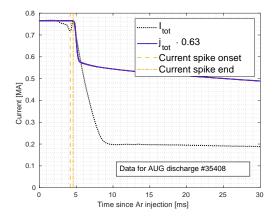
- Free electron density n_e measured by CO₂ interferometry
- Initial increase at the plasma edge
- Density on-axis constant until MHD mixing
- On-axis argon density assumed to evolve similarly

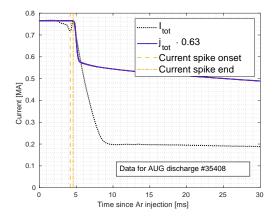
- Free electron density n_e measured by CO₂ interferometry
- Initial increase at the plasma edge
- Density on-axis constant until MHD mixing
- On-axis argon density assumed to evolve similarly
- Argon density after MHD mixing assumed constant, corresponding to homogenous distribution within pressure vessel (20% assimilation*)

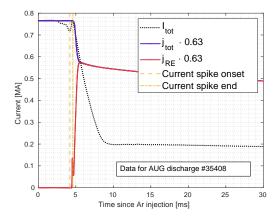
 T_e and n_e profiles from [5] E. Fable, et al.: *Nuclear Fusion*, **56**, 2016 * 20% of total Ar in the plasma volume = 20% of vacuum vessel volume.

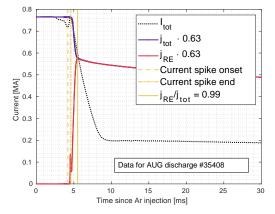


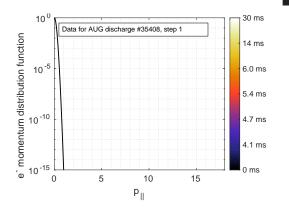
- Free electron density n_e measured by CO₂ interferometry
- Initial increase at the plasma edge
- Density on-axis constant until MHD mixing
- On-axis argon density assumed to evolve similarly
- Argon density after MHD mixing assumed constant, corresponding to homogenous distribution within pressure vessel (20% assimilation*)
- "Average" ionization state of argon chosen to give the measured n_e

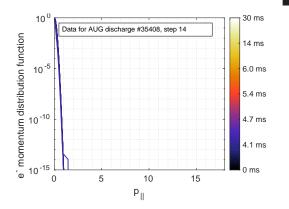

 T_e and n_e profiles from [5] E. Fable, et al.: *Nuclear Fusion*, **56**, 2016 * 20% of total Ar in the plasma volume = 20% of vacuum vessel volume.

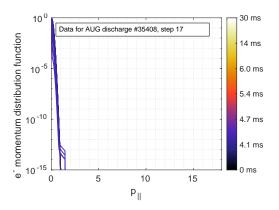

CODE is 0D, so I and j are not directly comparable...


- CODE is 0D, so I and j are not directly comparable...
- Scaling factor 0.63 chosen to get $j_0 \approx 1.2 \text{ MA/m}^2$

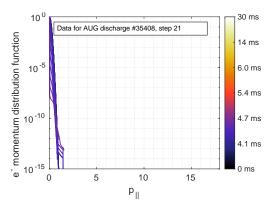

- CODE is 0D, so I and j are not directly comparable...
- Scaling factor 0.63 chosen to get $j_0 \approx$ 1.2 MA/m²
- Current drops due to density/resistivity increase


- CODE is 0D, so I and j are not directly comparable...
- Scaling factor 0.63 chosen to get $j_0 \approx 1.2 \text{ MA/m}^2$
- Current drops due to density/resistivity increase
- But why not to zero?

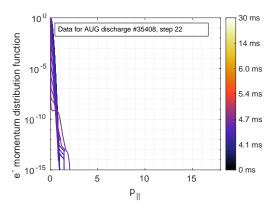

- CODE is 0D, so I and j are not directly comparable...
- Scaling factor 0.63 chosen to get $j_0 \approx$ 1.2 MA/m²
- Current drops due to density/resistivity increase
- But why not to zero?
- The runaway current!

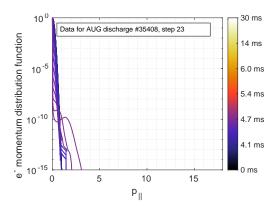

- CODE is 0D, so I and j are not directly comparable...
- Scaling factor 0.63 chosen to get $j_0 \approx 1.2 \text{ MA/m}^2$
- Current drops due to density/resistivity increase
- But why not to zero?
- The runaway current!
- Some ms after injection, 99% of the current is runaway!

Initially Maxwellian

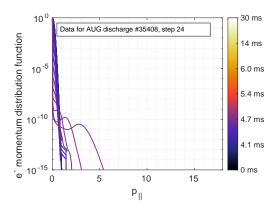


Initially Maxwellian

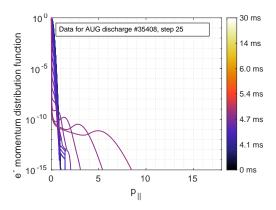


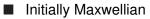

Maxwellian narrows as T decreases

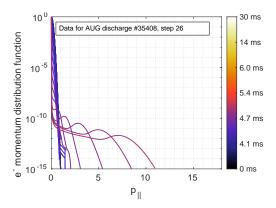
- Initially Maxwellian
- Maxwellian narrows as T decreases
- Hot-tail seed is formed



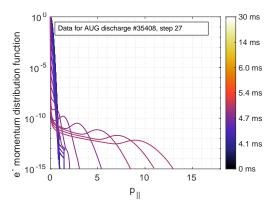
- Initially Maxwellian
- Maxwellian narrows as T decreases
- Hot-tail seed is formed

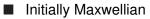


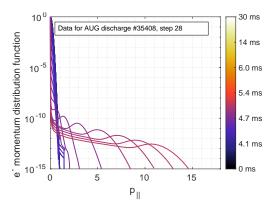

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

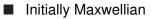


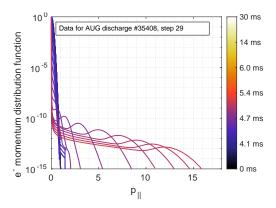
- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

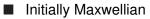


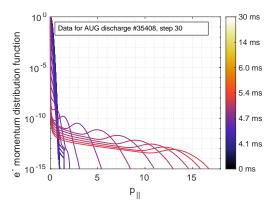

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

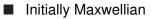


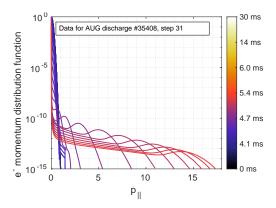

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

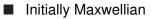


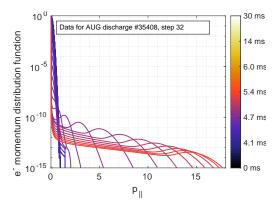

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated



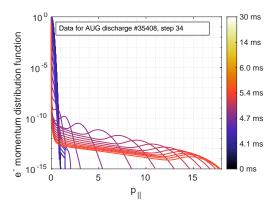

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

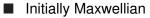


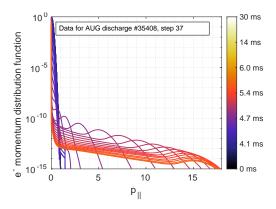

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

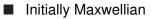


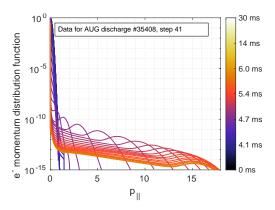
- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

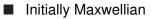


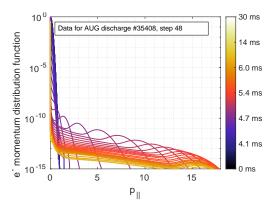

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

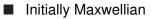


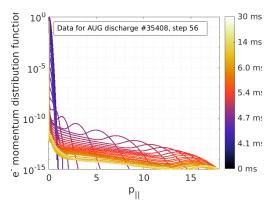

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

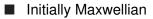


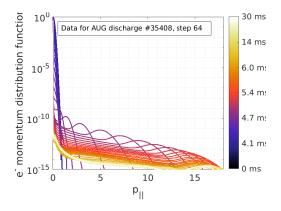

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

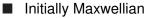


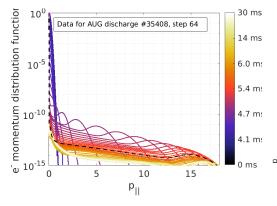

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated



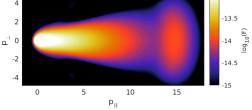

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

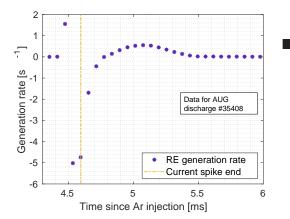



- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

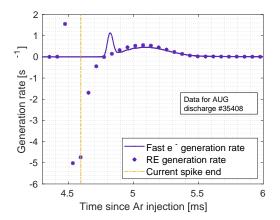


- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated



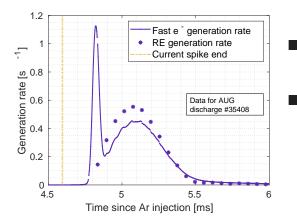

- Maxwellian narrows as T decreases
- Hot-tail seed is formed
- Part of hot-tail seed accelerated

Initially Maxwellian
Maxwellian narrows as T decreases
Hot-tail seed is formed
Part of hot-tail seed accelerated
2D distribution at J_{RE}/j_{tot} =0.99



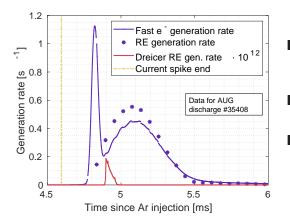
Generation rates

I REs defined as
$$e^-$$
 with $p > p_c$
 $p_c = \frac{1}{\sqrt{E/E_c - 1}}, E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$

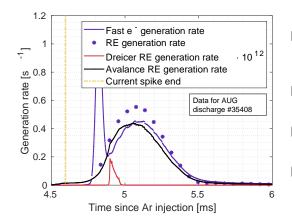

Generation rates

REs defined as e⁻ with
$$p > p_c$$

 $p_c = \frac{1}{\sqrt{E/E_c-1}}, E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$
Fast e⁻ defined as e⁻ with


p/mc > 0.75

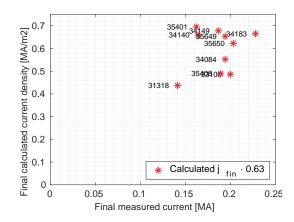
10/ 12


REs defined as
$$e^-$$
 with $p > p_c$
 $p_c = \frac{1}{\sqrt{E/E_c - 1}}, E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$
Fast e^- defined as e^- with

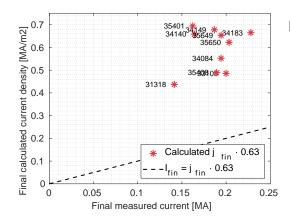
Fast e⁻ defined as e⁻ with p/mc > 0.75

REs defined as
$$e^-$$
 with $p > p_c$
 $p_c = \frac{1}{\sqrt{E/E_c - 1}}, E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$

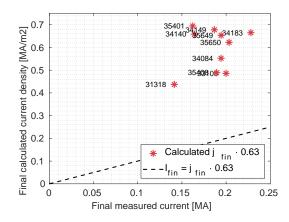
- Fast e⁻ defined as e⁻ with p/mc > 0.75
- Dreicer generation rate calculated using neural network [2]

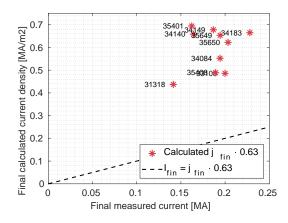

REs defined as e^- with $p > p_c$

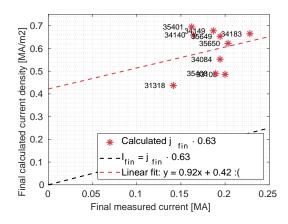
$$p_c = \frac{1}{\sqrt{E/E_c - 1}}, E_c = \frac{n_e e^{3} \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$$

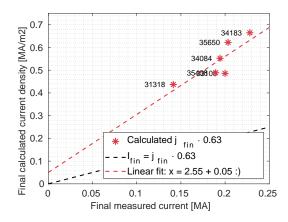

- Fast e⁻ defined as e⁻ with p/mc > 0.75
- Dreicer generation rate calculated using neural network [2]
- Avalanche growth rate calculated using semi-analytical formula [6]

[2] L. Hesslow, et al.: Journal of Plasma Physics, 85(6), 2019

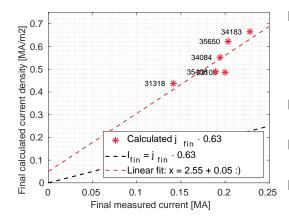

[6] L. Hesslow, et al.: Nuclear Fusion, 59, 2019


Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$

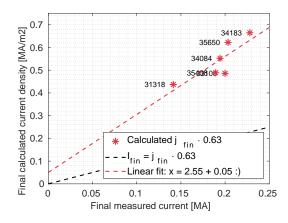

■ Comparing the measured I_{t=30ms} with calculated j_{t=30ms} · 0.63
 ■ I_{t=30ms} ≠ j_{t=30ms} · 0.63 since:


- Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$
- I $I_{t=30ms} \neq j_{t=30ms} \cdot 0.63$ since:
 - We don't model transport losses

- Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$
 - $I_{t=30ms} \neq j_{t=30ms} \cdot$ 0.63 since:
 - We don't model transport losses
 - The current profile changes (0.63 scaling only valid pre-disruption)



- Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$
 - I $I_{t=30ms} \neq j_{t=30ms} \cdot$ 0.63 since:
 - We don't model transport losses
 - The current profile changes (0.63 scaling only valid pre-disruption)
 - But we would have liked a line through origin and a better fit...


- Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$
 - $I_{t=30ms} \neq j_{t=30ms} \cdot 0.63$ since:
 - We don't model transport losses
 - The current profile changes (0.63 scaling only valid pre-disruption)
- But we would have liked a line through origin and a better fit...
- ...which we get if we remove four "fishy" shots*!

* where the assumed exponential temperature decay falls to the final temperature without a plateau at a higher calculated equilibrium temperature.

- Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$
 - $I_{t=30ms} \neq j_{t=30ms} \cdot 0.63$ since:
 - We don't model transport losses
 - The current profile changes (0.63 scaling only valid pre-disruption)
- But we would have liked a line through origin and a better fit...
- ...which we get if we remove four "fishy" shots*!
- Difference in slope expected (transport + profile change)

* where the assumed exponential temperature decay falls to the final temperature without a plateau at a higher calculated equilibrium temperature.

- Comparing the measured $I_{t=30ms}$ with calculated $j_{t=30ms} \cdot 0.63$
 - I $I_{t=30ms} \neq j_{t=30ms} \cdot 0.63$ since:
 - We don't model transport losses
 - The current profile changes (0.63 scaling only valid pre-disruption)
- But we would have liked a line through origin and a better fit...
- ...which we get if we remove four "fishy" shots*!
- Difference in slope expected (transport + profile change)
- To do: Improve temperature evolution estimate.

* where the assumed exponential temperature decay falls to the final temperature without a plateau at a higher calculated equilibrium temperature.

- Measured data from AUG shots was used (with some modification/interpretation):
 - ► On-axis free electron temperature

- Measured data from AUG shots was used (with some modification/interpretation):
 - ► On-axis free electron temperature
 - On-axis free electron density

- Measured data from AUG shots was used (with some modification/interpretation):
 - ► On-axis free electron temperature
 - On-axis free electron density
- Some parameters were estimated/guessed:

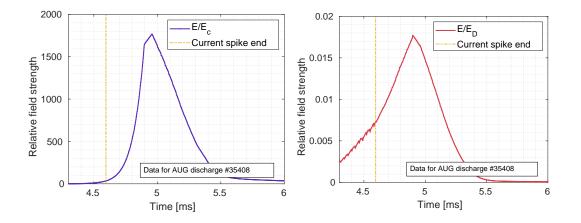
- ► On-axis free electron temperature
- On-axis free electron density
- Some parameters were estimated/guessed:
 - On-axis argon density

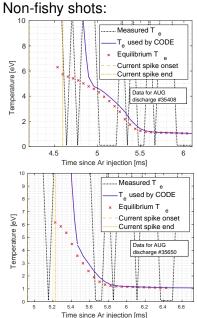
- ► On-axis free electron temperature
- On-axis free electron density
- Some parameters were estimated/guessed:
 - On-axis argon density
 - On-axis argon ionization states

- ► On-axis free electron temperature
- On-axis free electron density
- Some parameters were estimated/guessed:
 - On-axis argon density
 - On-axis argon ionization states
 - Initial on-axis current density

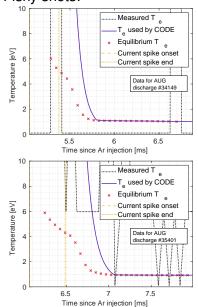
- ► On-axis free electron temperature
- On-axis free electron density

Some parameters were estimated/guessed:


- On-axis argon density
- On-axis argon ionization states
- Initial on-axis current density


Momentum distribution and on-axis current density calculated with CODE

- ► On-axis free electron temperature
- On-axis free electron density
- Some parameters were estimated/guessed:
 - On-axis argon density
 - On-axis argon ionization states
 - Initial on-axis current density
- Momentum distribution and on-axis current density calculated with CODE
- Hot-tail and avalanche most important RE generation mechanisms


- ► On-axis free electron temperature
- On-axis free electron density
- Some parameters were estimated/guessed:
 - On-axis argon density
 - On-axis argon ionization states
 - Initial on-axis current density
- Momentum distribution and on-axis current density calculated with CODE
- Hot-tail and avalanche most important RE generation mechanisms
- Calculated on-axis current density scales with measured current at t = 30 s

- ► On-axis free electron temperature
- On-axis free electron density
- Some parameters were estimated/guessed:
 - On-axis argon density
 - On-axis argon ionization states
 - Initial on-axis current density
- Momentum distribution and on-axis current density calculated with CODE
- Hot-tail and avalanche most important RE generation mechanisms
- Calculated on-axis current density scales with measured current at t = 30 s
- Conclusion: CODE captures important features of RE generation

Fishy shots:

