

Approximate atomic models for fast computation of suprathermal electron collisions with high-Z impurities in tokamak plasmas

Garching 05.05.2022

J. Walkowiak¹, A. Jardin¹, J. Bielecki¹, Y. Peysson², D. Mazon², D. Dworak¹, K. Krol¹ and M. Scholz¹

¹Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland ²CEA, IRFM, F-13108, Saint-Paul-lez-Durance, France

Chain of codes to simulate LHCD on WEST tokamak

Source: E. Nilsson et al, 2013 Nucl. Fusion 53 083018.

$$C^{ab} = v_D^{ab} \mathcal{L}(f_a) + \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^3 v_s^{ab} f_a + \left[\frac{1}{2} v_{||}^{ab} \frac{\partial f_a}{\partial p} \right] \right]$$

 C^{ab} - collision operator for collisions between particle species a and b,

 $\mathcal{L}(f_a)$ – Lorentz scattering operator,

 $p = \gamma v/c$ - normalized momentum,

$$C^{ab} = v_D^{ab} \mathcal{L}(f_a) + \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^3 v_s^{ab} f_a + \frac{1}{2} v_{||}^{ab} \frac{\partial f_a}{\partial p} \right]$$

Deflection frequency (elastic collisions)

 C^{ab} - collision operator for collisions between particle species *a* and *b*,

 $\mathcal{L}(f_a)$ – Lorentz scattering operator,

 $p = \gamma v/c$ - normalized momentum,

 C^{ab} - collision operator for collisions between particle species *a* and *b*,

 $\mathcal{L}(f_a)$ – Lorentz scattering operator,

 $p = \gamma v/c$ - normalized momentum,

 C^{ab} - collision operator for collisions between particle species a and b,

 $\mathcal{L}(f_a)$ – Lorentz scattering operator,

 $p = \gamma v/c$ - normalized momentum,

 C^{ab} - collision operator for collisions between particle species *a* and *b*,

 $\mathcal{L}(f_a)$ – Lorentz scattering operator,

 $p = \gamma v/c$ - normalized momentum,

Approximate atomic models, Jędrzej Walkowiak

Approximate atomic models, Jędrzej Walkowiak

Source: A. Jardin *et al*, 2020 IFJ PAN REPORT NO 2105/AP. https://www.ifj.edu.pl/badania/publikacje/raporty/2020/2105.pdf

N – number of bound electrons

Source: A. Jardin *et al*, 2020 IFJ PAN REPORT NO 2105/AP. https://www.ifj.edu.pl/badania/publikacje/raporty/2020/2105.pdf

Elastic collision frequency

$$\frac{d\sigma_e^{coll}}{d\Omega} = \frac{r_0^2}{4\boldsymbol{p}^4} \left(\frac{\cos^2(\theta/2)\boldsymbol{p}^2 + 1}{\sin^4(\theta/2)} \right) [Z - F(\boldsymbol{q})]^2$$

- r_0 the classical electron radius,
- θ deflection angle,
- $p = \gamma v/c$ normalized electron momentum,
- v impacting electron velocity,
- c the speed of light in vacuum,
- γ Lorentz factor,
- Z- atomic number.

Elastic collision frequency

$$\frac{d\sigma_e^{coll}}{d\Omega} = \frac{r_0^2}{4\boldsymbol{p}^4} \left(\frac{\cos^2(\theta/2)\boldsymbol{p}^2 + 1}{\sin^4(\theta/2)} \right) [Z - F(\boldsymbol{q})]^2$$

$$F(q) = \int \rho(r) e^{-iqr/a_0} d^3r \quad \longrightarrow \quad \begin{array}{c} \text{Depends on} \\ \text{electron density} \end{array}$$

- r_0 the classical electron radius,
- θ deflection angle,
- $p = \gamma v/c$ normalized electron momentum,
- v impacting electron velocity,
- c the speed of light in vacuum,
- γ Lorentz factor,
- Z- atomic number.

 $q = 2p \sin(\theta/2)/\alpha$ is the momentum transfer,

- $\alpha ~\approx~ 1/137$ the fine structure constant,
- $m{r}$ atomic radius as a spatial coordinate measured from the centre of the atom,
- a₀- the Bohr radius,
- *N* the number of bound electrons.

Elastic collision frequency

$$\frac{d\sigma_e^{coll}}{d\Omega} = \frac{r_0^2}{4\boldsymbol{p}^4} \left(\frac{\cos^2(\theta/2)\boldsymbol{p}^2 + 1}{\sin^4(\theta/2)} \right) [Z - F(\boldsymbol{q})]^2$$

$$F(q) = 4\pi \int_0^{\infty} \rho(r) \frac{ra_0}{q} \sin(qr/a_0) dr \quad \longrightarrow \quad \text{Depends on} \\ \text{electron density}$$

- r_0 the classical electron radius,
- θ deflection angle,
- $p = \gamma v/c$ normalized electron momentum,
- v impacting electron velocity,
- c the speed of light in vacuum,
- γ Lorentz factor,
- Z- atomic number.

 $q = |\boldsymbol{q}|,$ $r = |\boldsymbol{r}|,$

 a_0 – the Bohr radius, N – the number of bound electrons.

Atomic models

Quantum mechanical model

• Density functional theory (DFT)

Approximate atomic models, Jędrzej Walkowiak

Atomic models

Quantum mechanical model

• Density functional theory (DFT)

Semi-empirical approximations:

- Thomas-Fermi (TF)
- Pratt-Tseng (**PT**):

Approximate atomic models, Jędrzej Walkowiak

$$F(q) = 4\pi \int_0^\infty q(r) \frac{ra_0}{q} \sin(qr/a_0) dr$$

$$F(q) = 4\pi \int_0^\infty q(r) \frac{ra_0}{q} \sin(qr/a_0) dr$$

Numerical integration:

- Density functional theory (DFT)
- Thomas-Fermi (TF)
- Thomas-Fermi-Dirac (TFD)

$$F(q) = 4\pi \int_0^\infty q(r) \frac{ra_0}{q} \sin(qr/a_0) dr$$

Numerical integration:

- Density functional theory (DFT)
- Thomas-Fermi (TF)
- Thomas-Fermi-Dirac (TFD)

Numerically calculated integral can only be used to solve equations for collision frequencies in numerical way, which is time consuming!

$$F(q) = 4\pi \int_0^\infty q(r) \frac{ra_0}{q} \sin(qr/a_0) dr$$

Numerical integration:

- Density functional theory (DFT)
- Thomas-Fermi (TF)
- Thomas-Fermi-Dirac (TFD)

Analytic integration:

- Thomas-Fermi Kirillov approximation (TFK)
- Pratt-Tseng (PT)

Results: DFT vs TF models

DESCRIPTION

- Form factor for tungsten ion W⁺¹⁰ calculated with different models
- Results from DFT, TF and TFD models are calculated with the numerical integration
- TFK approximation is calculated with an analytic integral

$$RMS = \sqrt{\frac{1}{N^2} * \frac{1}{n} * \sum_{i=1}^{n} (F_{DFT}(q_i) - F_2(q_i))^2}$$

 F_{DFT} – form factor calculated with DFT approach F_2 – compared form factor N – number of electrons in ion n – number of q values

Results comparison

DESCRIPTION

 RMS of the absolute difference between form factors calculated with DFT and TF/TP electron density models:

RMS =
$$\frac{1}{N} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (F_{DFT}(q_i) - F_2(q_i))^2}$$

Can we make it better?

Electron density:

 $\rho_{PT}(r) = \frac{N}{4\pi r a^2} exp\left(\frac{r}{a}\right)$

Atomic form factor: $F_{PT}(q) = \frac{N}{1 + (qa)^2}$

$$\rho_{PT}(r) = \frac{N}{4\pi r a^2} exp\left(-\frac{r}{a}\right)$$

Electron density.

Atomic form factor: $F_{PT}(q) = \frac{N}{1 + (qa)^2}$

$$\rho_{PT_{opt}}(r) = \frac{1}{4\pi r} \left[\sum_{i=1}^{5} \frac{N_i}{a_i^2} \exp\left(-\frac{r}{a_i}\right) \right]$$

$$F_{PT_{opt}}(q) = \sum_{i=1}^{S} \frac{N_i}{1 + (qa_i)^2}$$

Approximate atomic models, Jędrzej Walkowiak

		Groupin	ig of the elec	trons in the	PT _{ont} model
Electron group	N_1	N_2	N_3	N_4	N_5
Max. number of bound electrons in each group	2	8	18	28	rest
Total bound electrons when group fully occupied	2	10	28	54	rest

		Groupin	g of the elec	trons in the	PT _{opt} model
Electron group	N_1	N_2	N_3	N_4	N_5
Max. number of bound electrons in each group	2	8	18	28	rest
Total bound electrons when group fully occupied	2	10	28	54	rest

$$a_{i}(Z,N) = 1/\sqrt{\lambda_{i}^{2} * \frac{(1-x^{n_{s,i}+1})}{1-x}}, \text{ where } x = \frac{Z-N}{Z}$$
$$\lambda_{i}(Z) = c_{1,i} * Z^{c_{2,i}}$$
$$n_{s,i}(Z) = c_{3,i} * Z^{c_{4,i}}$$

		Groupin	g of the elec	trons in the	PT _{opt} model
Electron group	N_1	N_2	N_3	N_4	N_5
Max. number of bound electrons in each group	2	8	18	28	rest
Total bound electrons when group fully occupied	2	10	28	54	rest

$$a_{i}(Z,N) = 1/\sqrt{\lambda_{i}^{2} * \frac{(1-x^{n_{s,i}+1})}{1-x}}, \text{ where } x = \frac{Z-N}{Z}$$
$$\lambda_{i}(Z) = c_{1,i} * Z^{c_{2,i}}$$
$$n_{s,i}(Z) = c_{3,i} * Z^{c_{4,i}}$$

Optimized parameters for PT _{opt} mode							
		i = 1	i = 2	i = 3	i = 4	i = 5	
$\lambda_i(Z)$	C _{1,i}	1.1831	0.1738	0.0913	0.0182	0.7702	
	C _{2,i}	0.8368	1.0987	0.9642	1.2535	0.2618	
$n_{s,i}(Z)$	<i>C</i> _{3,<i>i</i>}	0.3841	0.6170	1.0000	1.0000	1.0000	
	$C_{4,i}$	0.5883	0.0461	1.0000	1.0000	1.0000	

Results: PT_{opt}

DESCRIPTION

 RMS of the absolute difference between form factors calculated with DFT and TF/TP electron density models:

RMS =
$$\frac{1}{N} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (F_{DFT}(q_i) - F_2(q_i))^2}$$

Results: collision frequency

Approximate atomic models, Jędrzej Walkowiak

Fokker-Planck equation solving - reminder

 C^{ab} - collision operator for collisions between particle species *a* and *b*,

 $\mathcal{L}(f_a)$ – Lorentz scattering operator,

 $p = \gamma v/c$ - normalized momentum,

Inelastic collisions - Stopping power

Formal definition:

$$S(v) = -\frac{1}{n} \frac{dE(v)}{dx}$$

S(*v*) – stopping power

E(v) – particle kinetic energy

v – particle velocity

n – scatterer density

x – length of the particle trajectory

Inelastic collisions - Stopping power

Formal definition:

$$S(v) = -\frac{1}{n} \frac{dE(v)}{dx}$$

Bethe-Bloch theory (with further corrections) [ICRU Report 1984]:

$$S(v) = \frac{4\pi e^4}{mv^2} N \left[ln \frac{2mv^2}{I} - \beta^2 - \frac{\delta}{2} - \frac{U}{2} \right]$$

S(v) – stopping power

- *E*(*v*) particle kinetic energy
- v particle velocity
- n scatterer density
- *x* length of the particle trajectory

- N number of bound electrons in target atoms
- $\beta = v/c relativistic correction$
- δ density-effect correction factor
- U shell-effect correction factor

Source: ICRU Report 49, Stopping Powers and Ranges for Protons and Alph Particles (1984).

Inelastic collisions - Stopping power

Formal definition:

$$S(v) = -\frac{1}{n} \frac{dE(v)}{dx}$$

Bethe-Bloch theory (with further corrections) [ICRU Report 1984]:

$$S(v) = \frac{4\pi e^4}{mv^2} N \left[ln \frac{2mv^2}{l} - \beta^2 - \frac{\delta}{2} - \frac{U}{2} \right]$$

Mean excitation energy

Source: ICRU Report 49, Stopping Powers and Ranges for Protons and Alph Particles (1984).

Mean excitation energy

Formal definition:

$$lnI = \frac{\sum_{n \neq 0} f_{n0} ln E_{n0}}{\sum_{n \neq 0} f_{n0}}$$

lnI – mean excitation energy E_{n0} - energy of transition 0 -> n f_{n0} – oscillator strength of transition 0 -> n

Mean excitation energy – Current approach

- Interpolation between
 - Neutral atom: $I_Z = 10 Z eV$
 - Hydrogen like atom: $I_{1,Z} = I_{1,H} Z^2 = 13.6 Z^2 eV$
- With exponential function

$$I_N = exp\left(a\frac{Z-N}{Z-1}+b\right)$$

• Where
$$b = \ln(10 Z)$$
, $a = \ln(13.6 Z^2) - b$

Results – Mean excitation energy

Source: S. P. Sauer et al, Advances in Quantum Chemistry Vol. 71 (Academic Press, New York, 2015), p. 29.

Mean excitation energy

Formal definition:

$$lnI = \frac{\sum_{n \neq 0} f_{n0} lnE_{n0}}{\sum_{n \neq 0} f_{n0}}$$

Local plasma approximation [Lindhard 1953] (LPA):

$$lnI = \frac{1}{N} \int d^3r 4\pi r^2 \rho(r) ln(\gamma \hbar \omega_0)$$

$$\omega_o = \sqrt{4\pi e^2 \rho(r)/m}$$

lnI - mean excitation energy E_{n0} - energy of transition 0 -> n f_{n0} - oscillator strength of transition 0 -> n ω_0 - local plasma frequency r - atomic radius \hbar - reduced Planck constant

Source: J. Lindhard and M. Scharff, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 27 (1953) no. 15.

Mean excitation energy

Formal definition:

$$lnI = \frac{\sum_{n \neq 0} f_{n0} lnE_{n0}}{\sum_{n \neq 0} f_{n0}}$$

Local plasma approximation [Lindhard 1953] (LPA):

Source: J. Lindhard and M. Scharff, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 27 (1953) no. 15.

Results – neutral atoms

DESCRIPTION

- Mean excitation energy of neutral atoms
- Comparison of results from NIST Database and data calculated with LPA based on different electron density models
- LPA calculations cover only limited number of data points

Source: NIST X-Ray Mass Attenuation Coefficient https://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html

Results – Argon ions

DESCRIPTION

- Mean excitation energy of argon ions
- Comparison of results from multiconfigurational self-consistent field calculations by Sauer et al. and LPA based on different electron density models

Source: S. P. Sauer et al, Advances in Quantum Chemistry Vol. 71 (Academic Press, New York, 2015), p. 29.

Alternative solution

 Calculate all significant transition energies and oscillator strength for every ion of interest and use the definition of mean excitation energy:

$$lnI = \frac{\sum_{n \neq 0} f_{n0} ln E_{n0}}{\sum_{n \neq 0} f_{n0}}$$

Reference

J. Walkowiak, A. Jardin, J. Bielecki, Y. Peysson, D. Mazon, D.Dworak, K. Król, and M. Scholz, *Approximate atomic models for fast computation of the Fokker–Planck equation in fusion plasmas with high-Z impurities and suprathermal electrons*, Physics of Plasmas **29**, 022501 (2022);

https://doi.org/10.1063/5.0075859

Acknowledgment

- This work has been partially funded by the National Science Centre, Poland (NCN) grant HARMONIA 10 no. 2018/30/M/ST2/00799.
- We thank the PLGrid project for computational resources on the Prometheus cluster.
- This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.