Massive-material-injection-triggered disruptions

What do we understand? What is still unclear?

DE LA RECHERCHE À L'INDUSTRIE

E. Nardon, F.J. Artola, D. Bonfiglio, M. Hoelzl, D. Hu, M. Kong, S.J. Lee, M. Lehnen, A. Matsuyama, S. Sadouni, K. Särkimäki, C. Sommariva, F. Wieschollek

Runaway Electron Meeting, Garching, May 2022

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Foreword

- Presentation <u>not</u> focused on specific recent work
- Instead, will try to summarize current understanding, speculations and questions about
 Massive Material Injection (MMI) -triggered disruptions
 - MMI = Massive Gas Injection (MGI) or Shattered Pellet Injection (SPI)
 - Based mainly on JOREK and INDEX simulations
 - Focus on the pre-Thermal Quench (TQ) and TQ phases

Content

- What is the Thermal Quench (TQ)?
- TQ triggering mechanisms
 - The importance of a cold front
 - To have or not to have a cold front
 - Importance of non-axisymmetry
 - Characteristic // transport scales and T_e holes
 - The role of helical cooling
- TQ dynamics: difference between large and small I_p spike
- Field line stochasticity and implications for RE generation

What is the Thermal Quench?

- As the name says, the TQ is a loss of thermal energy. OK, but...
- The TQ is typically associated to strong MHD activity and an Ip spike
- Nature of the MHD activity?
 - 2/1 tearing mode seems key in most cases [de Vries et al. NF 2016, Nardon et al. PPCF 2021, ...]
 - 1/1 internal kink mode may participate, but probably does not suffice alone
 - Justification: 1/1 crash will not produce I_p spike unless edge plasma is very cold (think of sawteeth)... But if edge plasma is very cold, 2/1 TM should be present too
- A radiative collapse throughout the plasma is needed for a full TQ
 - Heat diffusion along stochastic FLs not efficient below ~100 eV [Ward & Wesson NF 1992]
 - Need impurity influx and mixing
 - **—** Full TQ often not obtained in 3D non-linear MHD sims.!
 - Probably related to impurities, but difficult to investigate because of numerical issues

The importance of a cold front

- A cold front causes a current profile contraction and thereby drives MHD (in part. the 2/1 TM)
- What do we mean by 'cold'?

L

- Resistive current decay time in region of perp. size δ_c and resistivity η_c : $\tau_d = \mu_0 \delta_c^2 / \eta_c$
 - Spitzer resistivity: $\eta_c = 2.8*10^{-8*}Z_{eff}/T_{e,c}[keV]^{3/2}$
- **τ**_d can be compared to several things, e.g.:
 - For SPI, T_{shards→core}
 - T_{disruption} warning
- We choose to compare τ_d to 10 ms to fix ideas
 - \rightarrow For T_d to be < 10 ms, one needs T_{e,c} < 30 eV

when $\delta_c = 0.2 \text{ m}$

Note that critical $T_{e,c}$ scales like $\delta_c^{-4/3}$!

To have or not to have a cold front (1/3)

- JOREK SPI simulations sometimes produce a cold front, sometimes not...
- Reasons are under investigation
- **T**_{sim.} ~ $T_{shards \rightarrow core}$ probably plays a key role

Machine / Scenario	Author of sims.	Cold front?	R(m) / a(m)	Pellet velocity (m/s)	T _{shards→core} (~T _{sim}) (ms)	<n<sub>Ne> when shards reach the core (10¹⁹m⁻³)</n<sub>	
ITER Hyd. L-mode	Di Hu	Marginal	6.2 / 2	500	4.0	1.0	
JET H-mode	Daniele Bonfiglio	Yes	2.96 / 1.25	200	~10*	2.1	
KSTAR H-mode	Sang-Jun Lee	No	1.8 / 0.5	400	1.2	2.0	
				*Shards path does not quite pass through plasma center			

All for pure Ne or mixed Ne+D₂ SPI

Commissariat à l'énergie atomique et aux énergies alternatives

To have or not to have a cold front (2/3)

Idealized picture: SPI = 2 step process

CES

- 1) Ablation and dilution cooling
- 2) Radiative Collapse (RC)
- 2 steps because ablation rate ~ $T_e^{5/3}$ → Drops strongly as T_e drops
- Self-reg. via abl. rate \rightarrow T_e 'always' ~ a few 100 eV after 1st phase
 - \rightarrow Generating a cold front with SPI requires RC

(origin of the idea of pure D₂ SPI [Nardon et al. NF 2020])

- Time it takes for RC to occur (very simple model isolated system): $T_{RC} \sim eT_e n_e / P_{rad} \sim eT_e / (L_{rad} n_{imp})$
 - Assuming $L_{rad} \sim 10^{-33}$ W.m³ and $T_{e,post-1st phase} \sim 400$ eV, one gets:

τ_{RC} ~ 6x10¹⁶/n_{imp}

 \rightarrow E.g. for n_{imp} = 2x10^{19} m^{-3}, τ_{RC} ~ 3 ms

Commissariat à l'énergie atomique et aux énergies alternatives

Fig. from https://www.researchgate.net/figure/Co oling-rate-Lz-as-sum-ofbremmstrahlung-recombination-andline-radiation-from-ADASfor_fig1_315457459

7

lrtm

To have or not to have a cold front (3/3)

INDEX 1.5D transport modelling and simple 0D model show that T_{RC} can be < or > T_{shards→core} depending on pellet velocity, shard size, etc.

Suggests possibility of diluting the plasma before triggering the TQ

But these are axisymmetric results...

SZZ

Commissariat à l'énergie atomique et aux énergies alternatives

[Matsuyama et al., to be submitted]

8

lrtm

Importance of non-axisymmetry: effect of ablation plasmoid spatial extent

- $\blacksquare (P_{rad})_{plasmoid} \sim \int n_e n_{imp} dV \sim \int n_{imp}^2 dV \sim N_{imp}^2 / V_{plasmoid}$
 - Assumptions: electrons mainly come from impurities; L_{rad} independent of T_e
 - \rightarrow Radiative Collapse (RC) easier for smaller V_{plasmoid}
- In JOREK & INDEX simulations, $V_{plasmoid}$ is usually largely exaggerated \rightarrow RC much harder than in reality!

JOREK sims. of Ne MGI in ITER: scan in toroidal extent of Ne source $\Delta \Phi$

Characteristic // transport scales and T_e holes

C 2 2

Characteristic // transport scales and T_e holes

 \rightarrow Should probably think of SPI as creating many T_e holes (which merge?)

- \rightarrow Consequences on $\mathsf{P}_{\mathsf{rad}}$ and its asymmetry, on MHD?
- \rightarrow Consequences of JOREK lacking resolution to get realistic plasmoids & T_e holes?

Cez

The role of helical cooling (1/2)

IRfm

- Magnetic island = quasi-isolated helical flux tube
- A thermal instability (collapse) can develop there [Rebut and Hugon, IAEA 1984]: 'radiative tearing mode' Resistivity $\uparrow \uparrow \rightarrow$ Current decays inside the island \rightarrow Island grows further (like for NTMs)
- Potential effect can be roughly estimated, assuming all current initially inside island is removed
 - Method:
 - 1) Estimate δI from j₀ and island width w: $\delta I \approx j_0 \pi a w/m$
 - 2) Estimate δB_r from δI (Biot and Savart): $\delta B_r \approx \mu_0 m \delta I / (2\pi^2 a) \approx \mu_0 j_0 w / (2\pi)$
 - 3) Use w from island theory (~ $\delta B_r^{1/2}$)
 - 4) Solve for w
 - Crude estimate:

q/q' ≈ a; r ≈ a; B_e ≈ B/10

 $w = 4 \left(\frac{rq \, \hat{B}_{\rm r}}{mq' B_{\theta}} \right)_{\rm s}^{1/2} \quad [{\rm Wesson, \, Tokamaks}]$

→ w ≈ 10a(
$$\delta B_r/(mB)$$
)^{1/2} → w ≈ 2.10⁻⁵a²j₀/B ≈ 5I_p[MA]/B → Huge!

\rightarrow This is a potentially very strong mechanism!

Commissariat à l'énergie atomique et aux énergies alternatives

Cea TQ dynamics: difference between large and small I_p spike (1/2)

It is relatively 'easy' to get a small I_p spike with JOREK

Correlated with n=1 (probably 2/1) mode amplitude

CCO TQ dynamics: difference between large and small I_p spike (2/2)

- It is much harder to get a large (realistic*) I_p spike due to numerical issues
 - *Not all experimental disruptions have a large I_p spike
- JOREK sims. with large I_p spike have a distinct strong macroscopic flow in the core (even w/o 1/1 mode)
 - Mixes poloidal flux \rightarrow flattens j_{||}/B and gives the large I_p spike
 - Mixes particles & impurities

Field line stochasticity and implications for REs

IRfm

- Stochastic transport is not just 'on' or 'off'
 Konsta Särikimäki calculates advection and diffusion coefficients by post-processing JOREK sims. with test electrons see his talk on Wednesday!
 - Edge Transport Barrier (ETB) found in ITER SPI sim. by Di / Hu with marginal cold front (no large 2/1 mode)
- No ETB in a cold VDE simulation which starts with a large MHD crash including large 2/1 tearing mode [Artola NF 2022]
 - → Missing the cold front probably has important consequences on predicted stochastic losses (among other things)

Commissariat à l'énergie atomique et aux énergies alternatives

-27

Summary & Outlook

- Generation of cold front and helical cooling probably key to TQ trigger and dynamics
- These depend on energetics of plasmoids and their environment (question of the radiative collapse)...
- ...Which depends on the spatial extent of the plasmoids
- \rightarrow Should be investigated and consequences for JOREK modelling with over-sized plasmoids drawn
- Practical question for ITER DMS: is it possible to dilute the whole plasma before triggering a TQ?
 - Pure H_2 SPI would seem ideal but suffers from plasmoid drifts \rightarrow Poor fueling efficiency
 - What about $\varepsilon Ne+(1-\varepsilon)H_2$?
 - Or maybe still pure H_2 , but lots of it?
- Physics of the TQ has to be clarified
 - Numerical issues still a bottleneck to study cases with a large I_p spike

Backup slides

Commissariat à l'énergie atomique et aux énergies alternatives

Pure D₂ SPI may be needed to fuel enough before triggering a TQ

