

Modelling of shattered pellet injection in **ASDEX** Upgrade with DREAM Joint REM & WPTE RT03 meeting 2025

P. Halldestam¹, P. Heinrich¹, G. Papp¹, M. Hoppe², M. Hoelzl¹, I. Pusztai³, O. Vallhagen³, R. Fischer¹, F. Jenko¹, the ASDEX Upgrade Team, and the EUROfusion Tokamak Exploitation Team

¹Max Planck Institute for Plasma Physics, Garching b. München, Germany, ²Royal Institute for Technology, Stockholm, Sweden, ³Chalmers University of Technology, Göteborg, Sweden

This work has been carried out within the framework of the FUROfusion Consortium, funded by the Furonean Union via search and Training Programme (Grant Accement No 101052200 - FUROfusion). Views and opinions vever those of the author(s) only and do not necessarily reflect those of the European Union or the Neither the European Union nor the European Commission can be held responsible for them

Shattered pellet injection (SPI)

(above) #694, $f_{Ne} = 100$ %, L(D) = 8.5(8) mm, $v_{inj} = 127$ m/s; 25 (below) #1136, $f_{Ne} = 10$ %, L(D) = 8(6) mm, $v_{inj} = 325$ m/s; 25

- Disruptions are a major concern for reactor-scale tokamaks
- Inject frozen material into plasma for fast controlled termination
 - \Rightarrow D₂ to reduce RE generation
 - \Rightarrow Ne to radiate away energy and control $I_{\rm p}$ decay rate
- SPI in ASDEX Upgrade
- Vast parameter space, high-dimensional optimisation

The disruption mitigation system in ITER will be based on SPI

How to model a disruption

What physics are essential?

- Current evolution
- Thermal bulk of electrons
- Ion charge state distributions
- Runaway electrons?
- Magnetic field?
 - Static flux surface geometry
 - Stochastisation by enhanced transport *ad-hoc*

[M. Hoppe et al. Comput. Phys. Commun. (2021)]

Purpose

• Develop a 1D fluid model for simulating SPI-induced disruptions

- Validation with ASDEX Upgrade SPI experiments
- Assess the impact of statistical variation in the fragment distribution (Parks' model) has on the disruption dynamics

Magnetic equilibrium and fragment plume \longrightarrow

Outline

- 1. Summary of DREAM modelling of SPI
- 2. Experimental comparison
- 3. Simulating background tungsten in 100% D₂ injections

•
$$\mathcal{Y} \in \{\Lambda, \chi_e, D_i, A_i\}$$

- $\mathcal{Y} \in \{\Lambda, \chi_e, D_i, A_i\}$
- t_{onset} as $T_e < 10 \,\text{eV}$ inside q = 2

- $\mathcal{Y} \in \{\Lambda, \chi_e, D_i, A_i\}$
- t_{onset} as $T_e < 10 \,\text{eV}$ inside q = 2
- free parameters
 - $\tau_{\text{decay}} = 1 \, \text{ms}$
 - $\chi_{e,\min} = 1 \, \text{m}^2/\text{s}$

- $\mathcal{Y} \in \{\Lambda, \chi_e, D_i, A_i\}$
- $t_{\rm onset}$ as $T_e < 10\,{\rm eV}$ inside q=2
- free parameters
 - $\tau_{\text{decay}} = 1 \, \text{ms}$
 - $\chi_{e,\min} = 1 \,\mathrm{m}^2/\mathrm{s}$
 - $\Lambda_{\text{max}} = 5 \times 10^{-7} \,\text{Wb}^2 \text{m/s}$ matching exp. I_{p} spikes

$$\mathcal{Y}(t) = \mathcal{Y}_{\min} + (\mathcal{Y}_{\max} - \mathcal{Y}_{\min}) \exp\left(-\frac{t - t_{onset}}{\tau_{decay}}\right) \Theta(t - t_{onset}).$$

- $\mathcal{Y} \in \{\Lambda, \chi_e, D_i, A_i\}$
- $t_{\rm onset}$ as $T_e < 10\,{\rm eV}$ inside q=2
- free parameters
 - $\tau_{\text{decay}} = 1 \text{ ms}$ • $\chi_{e,\min} = 1 \text{ m}^2/\text{s}$
 - $\Lambda_{\text{max}} = 5 \times 10^{-7} \,\text{Wb}^2 \text{m/s}$ matching exp. I_p spikes
 - $\chi_{e,\max}, D_{i,\max} = 10^2 \,\mathrm{m}^2/\mathrm{s}, A_{i,\max} = -10^2 \,\mathrm{m/s}$ [Linder *et al.* NF 2020]

$$\mathcal{Y}(t) = \mathcal{Y}_{\min} + (\mathcal{Y}_{\max} - \mathcal{Y}_{\min}) \exp\left(-\frac{t - t_{onset}}{\tau_{decay}}\right) \Theta(t - t_{onset}).$$

Sampling fragments

- Sizes sequentially sampled from Parks' distribution¹
- Speeds normally distributed with mean and spread

 $\langle v_{\rm frag}
angle = v_{\rm inj} (1 + \sin \theta_{\rm s}),$ $\Delta v_{\rm frag} / \langle v_{\rm frag}
angle = 0.2$

- Directions uniformly within cone with spread 20°

¹T. E. Gebhart *et al.* TPWRS (2019)

Sampling fragments

- Sizes sequentially sampled from Parks' distribution¹
- Speeds normally distributed with mean and spread

 $\langle v_{\rm frag}
angle = v_{
m inj} (1 + \sin \theta_{
m s}),$ $\Delta v_{
m frag} / \langle v_{
m frag}
angle = 0.2$

- Directions uniformly within cone with spread 20°
- What is the impact of the statistical variation?

¹T. E. Gebhart *et al.* TPWRS (2019)

 $v_{\rm inj}\approx 500\,{\rm m/s},\,D\approx 8\,{\rm mm},\,f_{\rm Ne}=0.085\,\%,\,12.5^\circ$ shatter head

Simulation setup

- Reference SPI H-mode discharge #40655 @t = 2.3 s
- Magnetic equilibrium and initial profiles from IDA²
- All Ohmic current
- Adaptive time stepper $\Delta t \propto \tau_{\rm ionis} \sim |\partial \log n_e / \partial t|^{-1}$

Pellet neon fraction scan

- + TQ triggered near core for $f_{\rm Ne} < 5\,\%$
- Non-disruptive for $f_{\rm Ne} \lesssim 0.001 \,\%$
- Parks' predicts $N_{\text{frag}} \sim 80 \text{ for}_{pure D_2, \sim 5000 \text{ for pure Ne}} \sum_{\frac{1}{2}1000}^{1500}$

Experimental comparison – plasma current evolution

- Nearly identical discharges, varying $f_{\rm Ne}$
- 40 fragment realisations per case
- Vertical displacement event (VDE) not modelled
- No external loop voltage

- Non-disruptive at $f_{\rm Ne} = 0$
- Negligible $j_{\rm re} < 10$ A for all cases, as seen in experiment

Experimental comparison – radiated energy fraction

- No external heating
- Perfectly conducting wall

$$f_{\rm rad} = rac{W_{
m rad}}{W_{
m th} + W_{
m mag}}$$

- Good agreement for $f_{\rm Ne} > 0.17 \%$
- Impact of fragment sampling in intermediate $f_{\rm Ne}$

³P. Heinrich *et al.* Nucl. Fusion (2024)

Parameter scan in max electron heat diffusion $\chi_{e, \max}$

Diffusive heat transport

$$\frac{\partial n_e T_e}{\partial t} \bigg|_{\text{transp}} = \frac{1}{V'} \frac{\partial}{\partial r} V' n_e \chi_e(t) \frac{\partial T_e}{\partial r}$$

- Higher diffusion \implies lower $f_{\rm rad}$
- Theory⁴: $\chi_e \propto |\delta B / B|^2$
- Stronger MHD for higher $f_{\rm Ne}$?

⁴A. B. Rechester & M. N. Rosenbluth, Phys. Rev. Lett. (1978) ^{1PP GARCHING | PETER HALLDESTAM | JUNE 2, 2025}
JOI

Including background tungsten impurities

Impurities enable more radiation loss channels

- Uniform initial profile $n_{\rm W}$ of tungsten
- Tungsten charge state fractional abundance $\phi^{(j)} = n_{\rm W}^{(j)} / n_{\rm W}$
- Initialised in coronal equilibrium, depending on $\,T_e\,$

$$\mathcal{R}_{W}^{(j)}(T_{e})\phi^{(j+1)} = \mathcal{I}_{W}^{(j)}(T_{e})\phi^{(j)}, \quad j = 0, \dots, 73, \quad \sum_{j=0}^{74} \phi^{(j)} = 1.$$

Including background tungsten impurities

Impurities enable more radiation loss channels

- Uniform initial profile $n_{\rm W}$ of tungsten
- Tungsten charge state fractional abundance $\phi^{(j)} = n_{\rm W}^{(j)} / n_{\rm W}$
- Initialised in coronal equilibrium, depending on ${\cal T}_e$

$$\mathcal{R}_{W}^{(j)}(T_{e})\phi^{(j+1)} = \mathcal{I}_{W}^{(j)}(T_{e})\phi^{(j)}, \quad j = 0,\dots,73, \quad \sum_{j=0}^{74} \phi^{(j)} = 1.$$

- #40738 $f_{\rm Ne} = 0$, single fragment realisation
- Fixing n_e , we adjust n_D when varying n_W
- $W_{\rm th} \approx {\rm const}$ for realistic values of $n_{\rm W}$

Radiated energy fraction with tungsten

scan in the pre-disruption radially uniform $n_{\rm W}$:

- Pre-disruption $n_{\rm W}\gtrsim 2.5\times 10^{15}\,{\rm m}^{-3}$ according to AUGD:GIW⁵
- At $n_{\rm W} \sim 10^{16} \,{\rm m}^{-3}$ we observe similar final $f_{\rm rad}$ as in experiment
- Other impurities e.g. Ne, B, C, N, Fe?
- Additional impurities are introduced during the disruption
- Cold impurities in SOL provide more loss channels as heated up during TQ
- Non-disruptive discharges yield $f_{\rm rad} \approx 20 \%$ in experiment

⁵T. Pütterich *et al.* Plasma Phys. Control. Fusion (2008)

Summary

- \square Good agreement with $I_{\rm p}(t)$ compared to experiment for $f_{\rm Ne}\gtrsim 0.17\,\%$
- \Box Small impact of the statistical variation in the shard size distribution on $f_{\rm rad}$
- \square Good agreement with experimentally measured $f_{\rm rad}$ for $f_{\rm Ne} \geq 0.17\,\%$
- $\hfill\square$ Negligible amount of RE current, as seen in experiment
- \square W impurities play an important role for $100\,\%$ deuterium injections
- \square With $\sim 10^{16}\,{\rm m}^{-3}$ background tungsten, simulated $f_{\rm rad}$ would compare well with experiment
- $\hfill\square$ Ongoing work with impurities other than W

IPP GARCHING | PETER HALLDESTAM | JUNE 2, 2025

_

Plasmoid drift suppression

- pressure build-up $\implies E \times B$ -drift
- analytical plasmoid drift model 6
- $L = 4 \text{ mm}, v_{\text{inj}} = 500 \text{ m/s}, \theta = 12.5^{\circ}$
- drift negligible for neon doped pellets
- reduced assimilation for pure hydrogenic pellets

⁶O. Vallhagen *et al.* J. Plasma Phys. (2023)

Plasmoid drift suppression, $f_{\rm Ne}$ -scan

Radiated energy fraction

Fraction of the available energy (initial stored energy $W_{\rm th} + W_{\rm mag}$, external heating $W_{\rm heat}$) that is dissipated via radiation $W_{\rm rad}$, accounting for some of the magnetic energy being coupled to surrounding conducting structures $W_{\rm c} \approx 0.5 W_{\rm mag}$.

$$f_{\rm rad} = \frac{W_{\rm rad}}{W_{\rm th} + W_{\rm mag} + W_{\rm heat} - W_{\rm c}} \tag{1}$$

• Radiated energy during disruption

$$W_{\rm rad} = \int \mathrm{d}t \, P_{\rm rad}$$

• Initial thermal energy

$$W_{\rm rad} = \frac{3}{2} n_e T_e + \frac{3}{2} \sum_i n_i T_e$$

IPP GARCHING | PETER HALLDESTAM | JUNE 2, 2025

• Initial poloidal magnetic energy

$$W_{\rm mag} = \frac{1}{2} \int {\rm d}r \, \frac{\partial \psi_{\rm p}}{\partial r} I(r) \label{eq:Wmag}$$

• External heating during disruption

$$W_{\text{heat}} = \int \mathrm{d}t \left(P_{\Omega,\text{ext}} + P_{\text{NBI}} + P_{\text{ECRH}} \right)$$
joint Rem & wpte RT03 meeting 2025 (13/13)(2)

Plasma current

- Ohmic current $j_{\Omega} \sim \sigma E_{\parallel}$ from **Ohm's law** using Sauter-Redl conductivity⁷
- Runaway electron current $j_{\rm re} = ecn_{\rm re}$ calculated from generation rates
 - Dreicer generation⁸, Hot-tail generation⁹
 - Avalanche growth rate accounting for partial screening effects in non-ideal ${\rm plasmas}^{10}$
- Total current density $j_{||}=j_{\Omega}+j_{\rm re}$ from poloidal magnetic flux $\psi_{\rm p}$ via Ampère's law
- Faraday's law of induction includes a *hyperdiffusive* term¹¹

$$\frac{\partial \psi_{\mathbf{p}}}{\partial t} = -2\pi \frac{\langle \boldsymbol{E} \cdot \boldsymbol{B} \rangle}{\langle \boldsymbol{B} \cdot \boldsymbol{\nabla} \varphi \rangle} + \mu_0 \frac{\partial}{\partial \psi_{\mathbf{t}}} \psi_{\mathbf{t}} \Lambda \frac{\partial}{\partial \psi_{\mathbf{t}}} \frac{\dot{j}_{\parallel}}{B}$$
(3)

⁵A. Redl et al. Phys. Plasmas (2021)
⁶L. Hesslow et al. J. Plasma Phys. (2019b)
⁷I. Svenningsson MSc. thesis (2020)
⁸L. Hesslow et al. Nucl. Fusion (2019a)
⁹A. Boozer J. Plasma Phys. (1986)
¹PF GARCHING | PETER HALDESTAM JUNE 2, 2025

Thermal electrons

- Electron density n_e from **quasi-neutrality**
- Energy balance governing the evolution of electron thermal energy

$$\frac{3}{2}\frac{\partial n_e T_e}{\partial t} = \frac{j_\Omega}{B} \left\langle \boldsymbol{E} \cdot \boldsymbol{B} \right\rangle + \frac{j_{\rm re}}{B} E_{\rm c} \left\langle B \right\rangle - n_e \sum_i \sum_{j=0}^{Z_i-1} L_i^{(j)} n_i^{(j)} \tag{4}$$

$$+P_{
m ion}+\sum_{i}Q_{ei}+rac{1}{V'}rac{\partial}{\partial r}V'rac{3n_e}{2}\chi_erac{\partial T_e}{\partial r},$$

- \rightarrow Ohmic heating
- $\rightarrow\,$ Radiative cooling, deuterium opaque to Lyman radiation (ADAS, AMJUEL)
- \rightarrow Collisional heat exchange
- \rightarrow Diffusive heat transport, with free parameter $\chi_e(t, r)$

Ions and neutrals

- Thermal energies $3/2n_i T_i$ are evolved via collisional heat exchange
- Charge state distributions evolve in time (ion species *i*, charge state $j = 0, 1 \dots Z_i$)

$$\frac{\partial n_i^{(j)}}{\partial t} = \mathcal{I}_i^{(j-1)} n_i^{(j-1)} n_e - \mathcal{I}_i^{(j)} n_i^{(j)} n_e + \mathcal{R}_i^{(j+1)} n_i^{(j+1)} n_e - \mathcal{R}_i^{(j)} n_i^{(j)} n_e \qquad (5)$$

$$+ \delta_{0j} \sum_{k=1}^{N_{\text{frag}}} \mathcal{G}_k \frac{\delta(r-r_k)}{4\pi r^2 R_0} + \frac{1}{V'} \frac{\partial}{\partial r} V' \left(A_i n_i^{(j)} + D_i \frac{\partial n_i^{(j)}}{\partial r} \right)$$

- \rightarrow Ionisation
- \rightarrow Recombination
- → Deposition of material as neutrals, ablation rate $\mathcal{G}_k \propto n_e^{1/3} T_e^{5/3}$ per the NGS model¹²
- \rightarrow Advective and diffusive particle transport, with free parameters $A_i(t, r)$ and $D_i(t, r)$

¹⁰Neutral Gas Shielding model [P. Parks & R. Turnbull Phys. Fluids (1978)] IPP GARCHING | PETER HALLDESTAM | JUNE 2, 2025 JOINT REM & WPTE RT03 MEET

Tungsten mean charge number

