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Asymmetric heating leads to rocket force
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shielding length asymmetry, 
n, T gradients
=> asymmetric heating

pellet rocket force



Force on pellet surface

• Momentum transfer:

• Expand in spherical harmonics

• Result for cryogenic pellet:
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Neutral gas shielding (NGS)

• Quasi steady-state ideal gas
balance equations:
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(ideal gas law)

(mass)

(momentum)

(energy)



Neutral gas shielding (NGS)

• Electron heating approximations:
• Mono-energetic beam
• Equivalent radial path
• Empirical energy loss functions
• Fully shielded

• Heating asymmetry parameters

• Small asymmetric perturbation    
-> linearise
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Normalized equation system
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• Complicated, but still linear 
1D ODE system

• Normalization -> semi-
analytical

• Normalized solution 
parameters



Pressure asymmetry at pellet surface

• Linear dependence on

• Weak dependence on

• Final rocket force:

• Without plasmoid shielding:
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Plasmoid shielding asymmetry
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Plasmoid boundary:
• Expansion at speed of sound
• Constant drift acceleration (Vallhagen, 2023)

• Gives trajectory of boundary determining shielding length:



Plasmoid shielding asymmetry
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Shielding assumptions:
• Electron stopped when path length > mean free path

• Density from mass conservation

• Temperature close to ionization threshold (about 2 eV)
• Assume cross-section absorbs energy needed for full ionization



Pellet trajectory simulation in AUG
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• Coupled ablation rate and rocket force 
equations

• Fix background plasma profiles
• Material drifts away from pellet

• Profiles similar to Szepesi et al, Journal of 
Nucl. Mat. 2009

• Agrees reasonably well with AUG experiment
• Shielding asymmetry dominates



Penetration depth in ITER
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• Generally higher impact than in present day devices
• Higher temperature, higher pedestal => stronger rocket force

• Small penetration depths even without rocket force in H-mode
• Need cumulative effect of SPI shards (or HFS injection)

• Only moderate effect of shielding
• Decrease with ionization radius, shielding dampens ablation rate



Conclusion

Summary

• Developed a self-consistent 
semi-analytical model for the 
pellet rocket effect

• Asymmetric NGS model

• Reasonable agreement with 
AUG experiments

• Could limit penetration depth 
in ITER, at least in H-mode

Outlook

• Improve on approximations
• Plasmoid shielding, ionization 

radius

• Mono-energetic beam

• Radial electron path

• Include in self-consistent 
background plasma model
• Study effect on SPI with 

several shards
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Backup slides
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Deflection of pellet shards in experiments
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Pellet speed measurements in 
AUG (Müller et al NF 2002)

Pellet shard trajectories in JET 
(Umar Sheikh, private communication)



Modelling the pellet rocket effect

Previous models

• by Senichenkov et al. (2007)
• only ablation asymmetry (no pressure)

• simplified plasmoid drift and ablation model

• by Szepesi et al. (2007)
• pressure asymmetry as semi-empirical parameter

• by Samulyak et al. (2023)
• 3D Lagrangian particle code
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Force on pellet surface

15

• Spherical harmonics expansion:

• Resulting force:

• For cryogenic pellets:



Empirical energy attenuation
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Isotropic NGS solutions
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• normalization:

• speed of sound:

...

• ablation rate:



Isotropic NGS scaling laws

• validates implementation
• Parks & Turnbull (1977) 

• weak E dependence (log-scale!)

• important for rocket effect:
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Outline of solution

• Write in matrix form (algebra using SymPy)

• Apparent singularity in C at sonic radius

• Enforce continuity => eliminate one unknown

• Derivatives at sonic radius from L'Hopitals rule

• Initial value problem starting from sonic radius

• Find remaining unknowns at sonic radius that satisfy BCs
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Full NGS solution
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Asymmetric NGS unexpected solutions

• Temperature higher 
on less heated side

• Density explains it
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Asymmetric NGS unexpected solutions

• Pressure higher 
on less heated side

→ reversed rocket effect

• High-energy electrons

• Not observed 
experimentally
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Plasmoid shielding asymmetry
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• Lower energy electrons at less shielded side 
=> negative contribution to

• High energy tail on both sides, lower energy 
electrons stopped earlier in neutral cloud
• Not accounted for with monoenergetic beam
• Energy asymmetry may be underestimated => 

do calculations also with  =0 (upper limit)



Pressure asymmetry scaling law parameters
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Ablation asymmetry at pellet surface
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Relative contribution to the rocket force:



Plasmoid shielding length equations
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Plasmoid shielding asymmetry
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• isotropic heating:

• asymmetric heating:



Pellet trajectory simulation in AUG
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• Coupled ablation rate and rocket force 
equations

• Fix background plasma profiles
• Material drifts away from pellet

• Profiles similar to Szepesi et al, Journal of 
Nucl. Mat. 2009

• Result sensitive to ionization radius scale 
factor    , but agrees with experiment with



Penetration depth in medium sized 
tokamaks
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• Coupled ablation rate and rocket force 
equations

• Fix background plasma profiles
• Material drifts behind pellet

• Profiles similar to Müller et al NF 2002
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