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Outline 2/ 17

Theme: reduced models of higher dimensional effects
� Plasmoid drift model [Vallhagen et al JPP 2023]

I model summary
I comparison with AUG experiments
I effect in ITER

� RE scrape-off loss model
I model summary
I effect in ITER



Plasmoid drift model 3/ 17

� MHD force balance equation rewritten as a current balance equation
� Integrate over upper half of the plasmoid to reduce to 1D, note Ey ≈ vdriftB
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Simplified parallell expansion model 4/ 17

� Constant line integrated density n̄ and cloud temperature T
� Prescribed T representative of values found in e.g. measurements by Müller

et al NF 2002 and simulations by Matsuyama et al PoP 2022
I ∼ 30 eV for pure D pellets
I ∼ 5 eV for Ne doped pellets due to radiative cooling

� n̄ determined by ablation rate from NGS model [Parks TSDW 2017], assumed to
“fill up” the cloud during the time it takes to drift a distance ∆y ∼ 1 cm

� Cloud expands along the field lines at the speed of sound cs inside the cloud
until pressure equilibration
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Shattered pellet injection 6/ 17

� Uniform distribution of speed (±40%) and
divergence angle (10◦)

� Statistical shard size distribution by
[Parks GA Report 2016]

� Distribution parameters by
[Gebhart et al IEEE TPS 2020]

� Ablation assuming the Neutral Gas Shielding
(NGS) model
[Parks TSDW 2017]

� Instantaneous flux surface homogenisation
I shifted by radial drift displacement ∆r from

the shard
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Particle and energy balance 7/ 17

� Time dependent ionization/recombination rate equations + advection/diffusion
� Electron energy density WM = 3

2nMTM:

∂WM
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� Radiation and ionization/recombination rates from ADAS
� Optionally AMJUEL for hydrogen species (for opacity to Lyman radiation)

I typically relevant for ITER SPIs
I Transparent plasma agrees better with AUG experiments (lower density)



AUG simulation setup 8/ 17

� Magnetic geometry and initial profiles from AUG shot 40655
I Representative case with high-quality (IDA) reconstruction available

� Background ion diffusion Dion,0 = 2 m2/s (similar to INDEX simulations in
A. Patels MCs thesis1)

� Enhanced transport coefficients and hyperresistivity in case of a disruption
I Max values Dion,max = DW = 100 m2/s, Aion,max = −100 m/s,

Λ = 10−5 Wb2m/s, decay time tTQ = 1 ms

� Prescribed onset time to match current spike in the experiment
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Pure D pellet, no disruption 9/ 17

� AUG shot 40743: D = 8 mm, L = 4.5 mm, vinj = 270 m/s, θshatter = 25◦

I Moderate sized (half of maximum) non-disruptive D2 injection
I Simulation params: Nshard = 102, ∆v/vinj = 40%, θdiv = 10◦

� Simulation without drift strongly overestimates line averaged densities
� Simulation with drift matches long-term behavior with ∆y = 9.5 mm

I Peak in data may be due to temporarily passing plasmoids
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1.25% Ne, w. disruption 10/ 17

� AUG shot 40732: D = 8 mm, L = 9 mm,
vinj = 230 m/s, θshatter = 12.5◦

I Full sized disruptive 1.25% Ne-doped
injection

I Simulation params: Nshard = 13,
∆v/vinj = 40%, θdiv = 10◦

� Sim. w.o. drift in reasonable agreement, but
underestimates peak density

� Simulation w. drift and recycling/drift
stopping at the edge improves agreement
I Neutral recycling, drift breaking at rational

q-values, shear around LCFS, other effects?
I Measurable with Langmuir probes,

He-beam diagnostic?
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ITER injection and TQ scenario 11/ 17

� Injection parameters: D = 28.5 mm, L = 57 mm, Nshard = 487, vp = 500 m/s,
∆v/vp = 0.4, spreading angle 10◦

� MHD instability mimicked by Rechester-Rosenbluth type diffusion
� Two alternatives to trigger the transport event

I Ne-doped shards reach q = 2 (“Early TQ”)
I Te drops below 10 eV inside of q = 2 (“Late TQ”)

� Duration of transport event is assumed to be either tTQ = 1 ms or 3 ms

� δB/B chosen so that Te reaches 200 eV within tTQ from transport alone
� In transport with Dion,max = 4000 m2/s, Aion,max = −2000 m/s

I gives a mixing on the ∼ 0.1 ms time scale



Effect of drifts in ITER 12/ 17

� DT H-mode, staggered SPI
I 1 pure D pellet followed by 1 D+Ne pellet (1.35% Ne), late TQ, tTQ = 3 ms
I Best performing case (St4 in Vallhagen et al NF 2024, accepted2)

� Low assimilation of first pellet with drift, but higher for second pellet
I extent depend on injection and model parameters, e.g. plasmoid size

� Only a minor effect on IRE

I May depend on TQ conditions
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Scrape-off model in DREAM 13/ 17

� Observation in JOREK: flux at LCFS essentially constant (Wang et al REM
2023)
I May be used to distinguish closed and open flux surfaces in DREAM (with

otherwise constant geometry)

� Implemented as a loss term:(
∂nRE

∂t
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Fluid runaway sources 14/ 17
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� Analytical hot-tail model as in Appendix C in [Hoppe et al CPC 2021]

� Avalanche corrected for partial screening effects
[Hesslow et al NF 2019]

� Tritium decay and Compton scattering (nuclear cases)
[Fülöp et al JPP 2020, Martin-Solis et al NF 2017]

� Rechester-Rosenbluth diffusion due to magnetic field perturbations
� Hyperresistivity with Λ = 0.1 Wb2m/s (on ohmic current) during transport

event



ITER case with moderate effect of scrape-off 15/ 17

� H L-mode, single stage SPI
I 3 D+Ne (Ne concentration 3.6%), early TQ
I Moderately performing single stage case,

(M4 in Vallhagen et al NF 2024)

� REs in the outer region lost
� RE plateau prevents further flux drop and

scrape-off
� However, positive feedback effect expected

I less REs⇒ more flux drop⇒ more
scrape-off⇒ less REs
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ITER case with major effect of scrape-off 16/ 17

� Best performing case, drift by one grid cell,
(St4 in Vallhagen et al NF 2024)

� Positive feedback effect reduces Iscraped−off
RE

� All flux surfaces scraped off
� Iscraped−off

RE = 1.3 kA (!)
� Disclaimer:

I Iscraped−off
RE = 2 MA w. Λ = 0

I Scrape-off only applied to REs
I Needs further validiation with higher

dimensional codes
I But a reason to be carefully optimistic...
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� Models for plasmoid drifts and scrape-off RE losses implemented in DREAM
� Plasmoid drift model compared with AUG experiments

I Non-disruptive pure D2 case agrees well
I Disruptive Ne-doped case agrees if assuming recycling/drift stopping at the edge

� Low assimilation for pure D2 pellets indicated for ITER, but RE current not
significantly affected (under favourable TQ conditions)

� Scrape-off model indicates all FSs may be scraped off before a large RE
beam has been formed in ITER
I Requires low enough RE current without scrape-off
I Sensitivity to model parameters
I Only applied to REs
I Should be verified with higher dimensional codes



Plasma current 17/ 17

� Reasonable agreement during time scale when the plasma resistivity
dominates

� Accounting for finite wall resistivity makes current quench longer in simulation
� Could in reality be compensated by plasma motion and resistivity to halo

current
� Kink in data could indicate an additional MHD event

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t tinj [ms]

0.0

0.2

0.4

0.6

0.8

I p
[M

A]

#40732 (1.25% Ne), twall =
w. o. drift
w. drift, recycling,
 y = 12 mm
exp

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t tinj [ms]

0.0

0.2

0.4

0.6

0.8

I p
[M

A]

#40732 (1.25% Ne), twall = 10 ms
w. o. drift
w. drift, recycling,
 y = 12 mm
exp



Pure D pellet, no disruption 17/ 17

� AUG shot 40743: D = 8 mm, L = 4.5 mm, vinj = 270 m/s, θshatter = 25◦

I Moderate sized (half of maximum) non-disruptive D2 injection
I Simulation params: Nshard = 102, ∆v/vinj = 40%, θdiv = 10◦

� Sim. w. o. drift strongly overestimates line averaged densities
� Sim. w. drift matches long-term behavior with ∆y = 9.5 mm

I Also agrees reasonably well with TS data
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