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Motivation: X-rays

WY Motivation

X-rays and their sources
® X-ray radiation is a part of electromagnetic spectrum with E,; = 250 eV.
® Wilhelm Conrad Réntgen (discovery in 1895, first Nobel prize in 1901).

® X-rays are exploited in fundamental and applied research, medical and
industrial applications, public security, . ..

® They are currently delivered by

® radioactive sources
® X-ray tubes
® devices based on electron accelerators such as synchrotron.

European XFEL (X-Ray Free Electron Laser)
® 2.1 km long linear electron accelerator + 210 m undulator.

® coherent X-rays with photon energy of 0.25-25 keV and pulse energy of
0.5-10 mJ.

® |arge investment and operation costs
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Motivation: X-rays

i

<
of é X-Rays from Laser Accelerated Electrons

Benefits over conventional sources

@ Shortening of the X-ray pulse duration

® current sources sub-picosecond (sliced synchrotron
beamlines)

® typical vibration period in atoms in order of tens of fs

® fundamental physical processes such as electron
transfer, lattice vibrations, phase transitions,
chemical reactions or spin dynamics could be
observed with shorter X-ray pulses.

@ Reduction of X-ray source size

® enhancement of absorption radiography resolution
® X-ray phase contrast imaging

© Financial availability ;

® 100TW laser system as small as one (large) optical 500 1000 1500 2000 2500
(pm)
table o
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Laser wakefield acceleration

W Laser wakefield acceleration

Ultrashort (tens of fs) ultraintense (2 10" W/cm?) laser pulse
interacts with the underdense plasma (n. ~ 10¥-1% cm~3).

e Strong non-linear ponderomotive force (~ V) expels light electrons
out of high intensity region.

e Strong electron plasma wave (wakefield, ~ 100 GV/m) arises
behind the laser pulse.

e Electrons can be accelerated at this plasma wave similarly like a
surfer at the wake wave.

Intense laser
/ 7, - pulse duration

[oplzatizaitront Courtesy:  Michigan

Engieering Center for
afast Optica i-
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Laser wakefield acceleration

Interaction laser vs. free electron in vacuum

0
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Laser wakefield acceleration

qg"' (s
JER

Nonlinear plasma wave: 1D model

3 1+2%¢) 172
gae ~H 71 mireer] Y
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Laser wakefield acceleration

Electron motion in nonlinear 1D plasma wave
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Electron bunch injection into the wakefield

qt"'t
fER

Electron injection into accelerating phase

parameters in a stable way.

® Self-injection is a simple, but unstable mechanism to inject electron into plasma
wave.

® Possible solution: to separate injection and acceleration processes.

Several injection mechanisms considered

—— separatrix
—— electron trajectory

® external injection,
® jonisation injection,

® injection by density
ramp,

longitudinal momentum

® optical injection. comoving coordinate

Motivation

Features of generated X-rays are determined by properties of
accelerated electron bunch.
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Electron bunch injection into the wakefield

oA

of Electron injection into accelerating phase

parameters in a stable way.

® Self-injection is a simple, but unstable mechanism to inject electron into plasma
wave.

® Possible solution: to separate injection and acceleration processes.

Several injection mechanisms considered

— — frozen separatrix

—— separatrix of
expanding bubble

—— new fluid trajectory

® external injection,
® jonisation injection,

® injection by density
ramp,

longitudinal momentum

® optical injection. comoving coordinate

Motivation

Features of generated X-rays are determined by properties of
accelerated electron bunch.
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Electron bunch injection into the wakefield
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Electron injection into accelerating phase

parameters in a stable way.
® Self-injection is a simple, but unstable mechanism to inject electron into plasma
wave.
® Possible solution: to separate injection and acceleration processes.

Several injection mechanisms considered

—— separatrix
—— trajectory

® external injection,
® jonisation injection,

® injection by density
ramp,

longitudinal momentum
=
5

° - 0o o
optlcal RIECHONE comoving coordinate

Motivation

Features of generated X-rays are determined by properties of
accelerated electron bunch.
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Electron bunch injection into the wakefield
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Optical injection into ion cavity

Lehe, PRL, 2013

linear plasma wave drive pulse

e Originally, optical injection considered for linear regime (a < 2) to avoid
self-injection.

® | ehe suggested cold optical injection by counter-propagating pulses with
strong drive pulse (a0 2 4) and weak injection pulse (a9 ~ 0.2).
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Electron bunch injection into the wakefield
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Spectra of accelerated electrons

Typical case of bubble regime
® drive pulse intensity ag pp = 4

(Ipp = 3.42 x 10%° W/cm?)

waist size wg = 9.5 um

laser wavelength A\; = 0.8 um injection pulse

3 %1012 t=28ps

electron density ng = 5 x 1018 cm—

laser pulse duration 7 = 25 fs — DP only
Various ratios of /jp/Ipp € [0.001,1] - ﬁ oo
® optimum found for Ijp/Ipp == 0.01.

N

® Spectrum is divided into two parts = low
energy part can be easily filtered =
very narrow spectrum being obtained

arbitrary units

o

0 200 400 600
® t =8 ps: E, = (634 +£24) MeV E [MeV]
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Electron bunch injection into the wakefield
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Acceleration process

drive pulse only lip =0.01/pp.
t=0.16 ps t=0.16 ps

15 15

10 10 g
= 5 \/ T 5
=0 ) =0 a
> -5 o > -5

-10 \ 2 -10 2

-15 -15

0 0
0.04 0.06 0.08 0.04 0.06 0.08
x [mm] X [mm]
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Electron bunch injection into the wakefield
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Acceleration process

drive pulse only lip =0.01/pp.
t=0.40 ps t=0.40 ps
15 15
10 P o 10 b
— 5 74 — 5 / i
Sl £ |
> -5 AY > 5 % .
-10 My 2 -10 Ny 2
15 -15
0 0
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Electron bunch injection into the wakefield

o

) -
& Acceleration process

drive pulse only lip =0.01/pp.
t=1.20 ps t=1.20ps
15 15
10 T 10 o
T ° J ! T 50 \
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Electron bunch injection into the wakefield

o

) -
& Acceleration process

drive pulse only lip =0.01/pp.
t=2.00 ps 3 t=2.00 ps
15 15 3
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Electron bunch injection into the wakefield

RL'(
fER

Acceleration process

drive pulse only lip =0.01/pp.
t=2.80 ps 3 t=2.80 ps
15 15
10 i / 6 10 Vg /
— 5} \ = 5t < {
€ o )’ 4 € o {,
- 5 - -5 /
-10 O 2 -10 \ 2
-15 -15
0 0
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Electron bunch injection into the wakefield
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Acceleration process

drive pulse only lip =0.01/pp.
t=3.60 ps t=3.60 ps
15 15
10 Y 10 )’ /
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Electron bunch injection into the wakefield

o

) -
& Acceleration process

drive pulse only lip =0.01/pp.
t=4.40 ps t=4.40 ps
15 ; 15
10 / Y/ 10 >
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y [um]

o

J\

Acceleration process

drive pulse only
t=5.20 ps

15
10

-5
-10
-15

1.54

1.56 1.58
x [mm]
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Electron bunch injection into the wakefield

//p = 0.0].IDP.
t=5.20 ps
15 3
10 G g
5 ™
0 / ‘J‘ § "
i, |
-10 e et
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1.54 1.56 1.58
x [mm]

12 /36



Electron bunch injection into the wakefield
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Acceleration process

drive pulse only lip =0.01/pp.
t=6.00 ps t=6.00 ps
15 N 15 N il
10 0
T By ) T O
= of & "4_! = of k Qr-vl !
> 5p 4 / >~ -5 /
10} 2 104 g 2
-15 ey 15 A
, 0 0
1.78 18 1.82 1.78 1.8 1.82
x [mm] X [mm]
Observation

Injection pulse does not disturb bubble dynamics and self-
injection when it is very weak in comparison with main beam.
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Electron bunch injection into the wakefield
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Three injection mechanisms

y [pm]

crossing beatwave injection ~ 70 % of trapped electrons
injection by laser field pre-acceleration = 20 % of trapped electrons
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Electron bunch injection into the wakefield
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Three injection mechanisms

-10

70 % of trapped electrons
20 % of trapped electrons

crossing beatwave injection ~
injection by laser field pre-acceleration =

13/ 36
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Electron bunch injection into the wakefield
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Electron bunch injection into the wakefield
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Electron bunch injection into the wakefield
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Three injection mechanisms

-10 b

70 % of trapped electrons
20 % of trapped electrons

crossing beatwave injection ~
injection by laser field pre-acceleration =

13/ 36
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Electron bunch injection into the wakefield
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Three injection mechanisms

y [um]

-20 0 20 40 60 80 100 120

crossing beatwave injection

injection by laser field pre-acceleration
induced self-injection

70 % of trapped electrons
20 % of trapped electrons
10 % of trapped electrons

€ X
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Electron bunch injection into the wakefield
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Three injection mechanisms

y [um]

-20 0 20 40 60 80 100 120

crossing beatwave injection

injection by laser field pre-acceleration
induced self-injection

70 % of trapped electrons
20 % of trapped electrons
10 % of trapped electrons

€ X

Consequence

Relatively high emittance of 2.88 m-mm-mrad.
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Electron bunch injection into the wakefield
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Electrons in the field of crossed pulses

-30 -20 -10 0 10 20 30 40
X [pm]
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Electron bunch injection into the wakefield
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Electrons in the field of the bubble

(S = [Ep= B, =—
X 2|e| 5? Y 4|e| y7 z 4‘e‘cy
0o =-120°
5 po = 1.5 mec
po = 1.8 mec
po = 2.1 mec
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Electron bunch injection into the wakefield

Other observations

ectron beams characteristics only weakly depends on short delay
between pulses. Injected charge is the greatest if pulses meet in time.
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Electron bunch injection into the wakefield

f& Other observations

between pulses. Injected charge is the greatest if pulses meet in time.

@ Same waist size of drive and injection pulses seems to be optimum choice.
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Electron bunch injection into the wakefield

Other observations
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©® Mutual perpendicular polarizations of both pulses seems to provide rather
more mononergetic bunches than in case of parallel polarizations for the
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Electron bunch injection into the wakefield
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Other observations

i) Electron beams characteristics only weakly depends on short delay
between pulses. Injected charge is the greatest if pulses meet in time.
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Electron bunch injection into the wakefield
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Other observations

@ Electron beams characteristics only weakly depends on short delay
between pulses. Injected charge is the greatest if pulses meet in time.

@ Same waist size of drive and injection pulses seems to be optimum choice.

©® Mutual perpendicular polarizations of both pulses seems to provide rather
more mononergetic bunches than in case of parallel polarizations for the
cost of lower charge.

O Discussed regime works well in electron densities 2 — 10 x 10'® W/cm?.

Recent news

An experiment1 with crossed pulses ag = 1.4, a; = 8.9, ne < 1.3 10%° cm'3,

@ = 155° proved the technical feasibility of the configuration and con-
firmed beatwave injection mechanism.
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Electron bunch injection into the wakefield

it
//

1 Comparison: counter-propagating pulse

¥ [pm)

-4
30 20 10 [} 374 376
X [um)] x [pum]

378 380 1166 1168 1170 1172 1174
x [jm)

Injection by the counter-propagating pulse

15 Time: 0.00 ps Py [mec] 10 Time: 1.44 ps Py [mec] Time: 4.08 ps Py [mec]
10 10 :
5 5 2
3 0 i 0 2o
) 5 s, 5
-10 -10 AL -10
Ea 0 370 375 380 1160 1165 1170 1175
X [pm] X [pm] X [pm]
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Electron bunch injection into the wakefield

Comparison: counter-propagating pulse

¥ [pm)

-30 -20 -10 0 -374 376 378 380 1166 1168 1170 1172 1174
X [um)] x [pum] x [

Injection by the counter-propagating pulse

15 Time: 0.00 ps Py [med] 0 Time: 1.44 ps Py [med] 4 Time: 4.08 ps py [mec]

10 1 :
5 3 5

i o = : 0

S 5 . ] 5 ."_
10 -10 .
370 375 380 1160 1165 1170 1175
X [pm] X [pm] X [pm]

Proposed scheme leads to the more compact and shorter electron bunch than
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Electron bunch injection into the wakefield

counter-propagating pulse
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® For the same laser and plasma parameters, the length of the electron bunch is

much larger.
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Electron bunch injection into the wakefield
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Injection by a preceding pulse

Rio1 = k5 (2.9 + 0.30540,1)

Collection volume [Benedetti, PoP,
2013]

ro = ky'(—2.0 + 1.4a0 — 0.052))

Optimal delay between pulses for an elliptical bubble.

1 r? T
At==|Rjoy/1— o2 +Rj1y/1— >+_
C( Il RJ2_,0 I 2

2
"o
2
R? 4
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Electron bunch injection into the wakefield
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Injection by a preceding pulse

our injection
= = all electrons
— — peak: 269.1 MeV
— — width: 24.3 MeV

2 [pm]

¢ m] O 0 100 200 300
E. [MeV]

Parameters and results

ne =3x10% cm=3, a9 = 4, a3 = 2.5, 70,1 = 25 fs, AT = 65 fs,
wo,1 = 9.5 Hm
Q@ =188 pC, &, = 1.63 m-mm-mrad, D = 1.8 um
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Electron bunch injection into the wakefield

Injection by a preceding pulse
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X-rays from laser accelerated electrons
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X-Rays from laser accelerated electrons

Betatron radiation Thomson backscattering

electron trajectory
counter-propagating laser pulse
-

electron
trajetory
bubble

laser pulse

Principle of radiation emission

Transverse oscillation of accelerated electrons!
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X-rays from laser accelerated electrons

Radiation by a moving charge

dt ©
- = 1= ! / . observer
dt’ n(t)B(t) origin N b

Electric field at observer’s position

_ e JA=B)n-p) nx[n-B)xhl
E(ro, t) = reo | R(l—n .ﬂ)3/+\ cR(1—B-n)

Vv TV
velocity field acceleration field

ret
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X-rays from laser accelerated electrons

Radiation by a moving charge

@ — 1—n(t’)ﬂ(t’) —h ro observer

Electric field at observer’s position

E( t)_ € MM n><[(n— )X:B]
" ~ Ameg /Ra'(l/—m ‘ch— )31

veloaty field acceleratlon field

ret
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Temporal profile of X-ray betatron radiation

WA Betatron radiation

Chosen approach
Presented in V. Horny et al., Phys. Plas., 24, 063107, 2017.

d& oo 2., ceo [T )2
= _CEO/_OO |R(DE(2)*dt = =2 /0 IS[R()E(t)](w)]” dw
d?/ ce 2
Joda = 70 ISIR()E(t)](w)]

Alternative integral approach

Presented e.g. in A. Thomas, PRSTAB, 13, 020702, 2010 or Chen et al.,PRSTAB
16, 030701, 2013.

’ a 2
2 2 [ /_ n-R(t) _

LI Y [0 ==8D] nx[n—p) <Al
dwdQ  1673egc _ (1—B-n)?
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Temporal profile of X-ray betatron radiation

g T
WF Shannon-Niquist-Kotelnikov-Whittaker theorem
R(t)E(t): )

d</ . Ceo 2

e = L BIRME(D])P

Sampling frequency must be at least twice as high as the highest
frequency component of sampled signal!

Signal must be properly sampled to capture X-rays!
Eph Vph = Eph/h ‘ Vsampling At
15 keV 3.64x1018 Hz | 7.28x10'8 Hz 0.137 as
1 MeV 2.42x10%° Hz | 4.84x10%° Hz 2.06 zs

Typical step in PIC simulations is 0.01-0.1 fs + signal is not
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Temporal profile of X-ray betatron radiation
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Undulator and wiggler regime

K=Wy= rgkp\/g

In practical units, K parameter can be expressed as

K =1.33 x 107 /yne [em™3]rg [um].
4 / Wiggler
/\ /\ m x K>1
VAR v/

- Undulator
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Temporal profile of X-ray betatron radiation
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Radiation in undulator and wiggler case

K = 0.066
Radiation emitted along longitudinal axis

(A) E, =10 MeV, r3 = 0.05 um E, =10 MeV, r3 = 0.05 pm

5 200
.02 1
= >
e 0 = 100
< o2 72
-0.4 =€ o0
0 2 4 6 SIS 0 20 40
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Temporal profile of X-ray betatron radiation
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Radiation in undulator and wiggler case

ones vanishes.
K=1.0
Radiation emitted along longitudinal axis
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Temporal profile of X-ray betatron radiation
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Radiation in undulator and wiggler case

ones vanishes.
K =3.15
Radiation emitted along longitudinal axis

(C) . E, =40 MeV, r3 = 1.2 um E, =40 MeV, r3 = 1.2 ym
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as a continuous synchrotron spectrum.

K =5.

46

Temporal profile of X-ray betatron radiation

Radiation in undulator and wiggler case

Radiation emitted along longitudinal axis

(D) E, =150 MeV, r5 = 1.2 um

0.1

dgjg [10715 J eVt sr7l]

0.2

E, =150 MeV, r3 = 1.2 um

—raw data
—— smoothed data
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Temporal profile of X-ray betatron radiation
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Simplification for wiggler case

E(t)R(t)ZU(t):g’:uf(t)’ } ‘ ‘ ‘

J=1

o E(R(t) [t—t] <At ‘ ‘ '
uj(t) = { 0 otherwise.
Radiated energy per solid angle is then

2
d& +oo | Mo ! +oo Je 2
q - ceo/_oo Zluj(t) dt:ceo/_Oo leuj(t)\ dt
j= j=
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Temporal profile of X-ray betatron radiation

i
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Simplification for wiggler case

N
d®I ceo 2
o= ZIS[uj(t I =3 S,
N, ... number of turning points in electron sine-like trajectory
One peak of signal Total radiation summed

15 Ib-; 30 —— simplified calculation
3 I = = smoothed full
g 10 % 20 calculation
€ 5
wr =N 10

0 5
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Temporal profile of X-ray betatron radiation
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Simplification for wiggler case

-
Ibs 1.5 F critical energy: 2.95 keV A =800 nm
i T=50fs
3 | =5.21x10' W/cm? a0 = 1.56
=05 no = 1.15x10'® cm
g ny = 8.02x10*® cm™3
% 0 L L 1
0 1 2 3 4 5
5 E, [eV] x10%
1 x10 ph 5 0
_. 05 _ —
> RN
E 0 [ | I I I = é
w™-0.5 ‘ S 120 o
-1 -10 0
-1 01 2 3 45 6 7 8 01 02 03 04 05
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Temporal profile of X-ray betatron radiation

%'x
JER

Simplification for wiggler case

-
Ibs 1.5 F critical energy: 2.95 keV A =800 nm
7 T=50fs
3 | =5.21x10'® W/cm? a0 = 1.56
=05 no = 1.15x10*® cm™
g ny = 8.02x10*® cm™3
% 0 L L 1
0 1 2 3 4 5
4
| x10° Eon [eV; x10
Radiation duration very short!
= 05 | | € 0 140 >
S | I o
= or | | = =
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Temporal profile of X-ray betatron radiation

W& Radiation by electron bunch

i I R
‘ ‘ > T E(D)R(E)],,, = Ne E(8)R(1)],
‘ ‘ ‘ ‘ ‘ lot = NSIO
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Temporal profile of X-ray betatron radiation
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W& Radiation by electron bunch
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Temporal profile of X-ray betatron radiation

e

i T——
W& Radiation by electron bunch
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Temporal profile of X-ray betatron radiation
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Radiation by electron bunch

~ (ERY

1 R I
JTJ—H—H T T EOR®Le # Ne E@RE),
lot = Nelp

Assumption of incoherence of electrons in the bunch

Ne o2, d2/

dwdQ ~ 2= dwdQ "~ ¢ dwd

ave

Contributions by single electrons may be summed up!
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Temporal profile of X-ray betatron radiation

%
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Spectrograms

When two assumptions are fulfilled
@ incoherent nature of electron bunch
@ wiggler regime of betatron oscillations,

temporal profile of radiation can be derived:

Ne Npi Np d2/
dwdQ ZZ dwdQ‘ dwdQ2 |,
i=1 j=1 k=1
d’/ . &1 |
dwdQ telr—AtT+A] el Bt AL dwdQ|,  dtdwd
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Temporal profile of X-ray betatron radiation
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X-rays using 100 TW system

® energy in beam: 2.65 J
® pulse duration: 40 fs
® waist size: 9 um

® plasma density 1.5 x 1019 cm—3
® linear density ramp 40 um

® 2 mm of homogeneous plasma
® a0=4 g 2
T x10® =
3 ° 200 g
_ & [JeVlsr! fs7! el™!] 18 ' 1: 150 &,
EdQdt %1018 lead 0.2 cm %10 =10 B
2000 ’ % £
= L >, RN ) ZO g
> 1500 = TIE w0 0 50 100 g
= = time [fs)
gﬁ 1000 ?? 107
o
ad 0.2 cm
0
-50 0 50 100 -20 0 20 c)
time [fs] time [fs] 1000 2000 3000
energy [keV]

Continuous injection, electron energy up to 380 MeV.
Critical energy 127 keV, x-ray pulse length 13.7 fs.

Generation of X-Rays by Laser Accelerated Electrons, September 26, 2018, CTU Prague

33 /36



Temporal profile of X-ray betatron radiation
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Experiment at PALS 2: Radiation estimation

arameters
71 =50 fs, E=0.36 J,
ne =5x 1019 cm—3

&1
JEdQd

a) [Jevlsrfslel)

_.100 20 30 40

% energy [keV]
& = %1018 =
& 50 @ 2 6%
g 715 4 %
5 & 20
DA g
0 %05 . 2 %
0 20 40 60 = oA NN L
time [fs] | 0 0 &
z|E 20 0 20 40 60 ©

S :
E.=24keV, 7=30fs tme 2
2Bohétek, K.,..., Horny, V.,

...(2018). Stable electron beams from laser
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Temporal profile of X-ray betatron radiation

o
fER

Novel crossed pulses optical scheme

: ezfgf}:i:::;?:"lg'?: - ® plasma density 4.0 x 1018 cm—3
- \[/)vaist size: 9 H.m ® |inear density ramp 40 um
. ® 2 mm of homogeneous plasma
® o0=4
Ty X101
&I 7

[Jevisrtfstel™] (1018

600 LEdQdt S S
_ %
> -
'S 400 6 o
a 4 o
. T 0 200 400 600
% 2 a . energy [keV]
- x 10" =
0 o L 35 >
" > 5 S 60 &
" f »n 25 2
ime [S] - 2 40 %C
... 5 15 G}
Critical energy 54 keV, x-ray 2 20 =
s 0 =
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Conclusions
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electron bunches.
@ Novel injection schemes can deliver high charge (tens of pC) and short
length (fs) electron bunches.
e orthogonally crossed pulses with parallel polarizations
® injection by a preceding pulse
© The method enabling calculation of the betatron radiation spectrogram
was developed.

@ 2 fs long X-ray pulses can be generated. Such duration is shorter than
fundamental physical processes such as chemical reactions, lattice
vibrations etc.

Prospects for further work
® injection dynamics ® bubble dynamics

® collection volume ® shape of pulses

® coherent radiation ® tunability
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Response to Prof. S. Bulanov's comments
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Ponderomotive force

Comment

"...the terminology used is somehow vague in what is concerning
the ponderomotive force and radiation force definition.”
Response

e agreed, this paragraph should have been either omitted, or
defined more accurately

e this term was introduced because it was used when discussing
bubble formation and evolution

e it is not an important term for defended dissertation
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Response to Prof. S. Bulanov's comments
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Transverse wake wave breaking

Comment

"...when the author discusses the effects of 3-dimentional geometry on the
electron injection he does not implement well known mechanism of transverse
wake wave breaking.”

Response
The following important reference is missing in my dissertation.

Bulanov, S. V., Pegoraro, F., Pukhov, A. M., and Sakharov, A. S. (1997).
Transverse-wake wave breaking. Physical Review Letters, 78(22), 4205.

The effect of transverse wake wave breaking was discovered earlier than the
bubble regime. Only bubble regime was discussed in defended dissertation.
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Response to Dr. P. Tomassini's comments

i
/ A

Pellicle beamsplitter

Comment

" Author proposes to make a temporal splitting of a pulse by using
a pellicle placed at a proper distance from a flat mirror. There are
several methods to create multiple pulses, each of them having
limitation due to complexity, stability or efficiency. This is why,
in my opinion, more detail of the new scheme should have been
presented in the thesis. More specifically, general flatness (not
roughness) of a pellicle is not a stable parameter. So, what's
about the focusing properties of the first pulse? How the author
faces with multiple reflections? | strongly suggest the candidate
to go in deeper detail with his scheme.”
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Response to Dr. P. Tomassini's comments
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Double pulse generation

mirror

N splitted
N % laser
pulses
incident laser
pulse
gas jet
flat /
s electron
pellicle delay bunch
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Response to Dr. P. Tomassini's comments

fe

W Pellicle beamsplitter

Response
® pellicle beamsplitter: just the first idea

® multiple reflections
® unstable pellicle flatness

® dazzler: more sophisticated way
® acousto-optics programmable dispersive filter!
® about € 50 000
® copy of pulses
® interference of pulses = more pulses generated
® interferometry (delay line)
® Michelson interferometer

® Mach-Zender interferometer
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Response to Dr. P. Tomassini's comments
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Beam quality limit

Comment

"Beam quality is nowadays a crucial parameter for application (includ-
ing Thomson or FEL X-rays sources). The two collinear pulses scheme
looks promising but simulations presented by the candidate reveal some
limitation to beam quality, both on longitudinal and transverse direc-
tions. So, in the opinion of the candidate, which are the main physical
(or numerical) processes that limit beam quality in this scheme? For
instance it is known that most of the PIC codes (including EPOCH)
induce a numerical growth of transverse emittance. Do different codes
give rise to the same results?”
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Response to Dr. P. Tomassini's comments

?H
/ ]

Growing emittance in simulations

o= \/ — {ypy)?/mec

remains constant during the acceleration (Liouville's theorem).
It grows with standard 2" order Yee's scheme!

3.0
g 2.5 Figure taken from Lehe, R., Lifschitz,
E 20 A., Thaury, C., Malka, V., and Davoine,
£ X. (2013). Numerical growth of emit-
= 15} 0 . .
@ tance in simulations of laser-wakefield
g 10 acceleration. Physical Review Special
E 05} g Topics-Accelerators and Beams, 16(2),
A 021301.

150 200 250 300 350 400 450
Acceleration distance (um)
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Response to Dr. P. Tomassini's comments

TR

/\J\ Numerical Cherenkov radiation

20 5) 4.5 _ iniecti
— 1250 .7 W B o a = fé;(;;_?t;“u%ﬁsnleai“;‘n?%'é’iﬂn
| 10 / 'ﬂg —— additional injection
- 3 3 — = total
ﬁ 7.5 7. i g
S 5 \ i
S 25 W"””i 77777777777777777777777
0 I
240 260

[y t [ps|
Figures from Horny, V., Masldrova, D., PetrZilka, V., Klimo, O., Kozlova, M., and
Kris, M. (2018). Optical injection dynamics in two laser wakefield acceleration
configurations. Plasma Physics and Controlled Fusion, 60(6), 064009.

Emittance growth was mitigated introducing 6" order scheme.
Even though the improved Lehe's scheme was implemented into
EPOCH recently, it does not work well yet!
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Response to Dr. P. Tomassini's comments

WA Numerical Cherenkov radiation

—— transverse injection
—— longitudinal injection
—— additional injection

\W 10 Fg 3 — = total

380
@ [pm] t [ps]
Figures from Horny, V., Mas8ldrova, D., Petrzilka, V., Klimo, O., Kozlova, M., and

Kris, M. (2018). Optical injection dynamics in two laser wakefield acceleration
configurations. Plasma Physics and Controlled Fusion, 60(6), 064009.

Emittance growth was mitigated introducing 6" order scheme.
Even though the improved Lehe's scheme was implemented into
EPOCH recently, it does not work well yet!
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Response to Dr. P. Tomassini's comments
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Limitation of the beam quality

Considerable influences

Among practical issues such as laser beam/system or gas jet quality:
@ Collection volume size of trapped electrons

@ Injection dynamics

© OfF-axis injection: large initial transverse momentum
@O Beam-loading effect

@ Bubble dynamics during the acceleration phase

Suggestion for further research

@ Tailored density profile

® transverse: wave guide
e longitudinal: bubble dynamics compensation, phase space
rotation

@ Adjustable laser pulse temporal and spacial profiles
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Response to Dr. P. Tomassini's comments
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Betatron X-ray pulse duration
Comment

" Author claims that the X-ray burst generated by betatron oscillation in the
case of the optical injection schemes is much shorter than we can infer by
the standard formula L/c. This is a very interesting result that definitely
deserves to be understood in deeper detail. Which are the reasons of such

a discrepancy? What are the key parameters that trigger it? Can we infer
some scaling laws for that?”

Response

50

40
® interpretation of a bunch length

30
® non-uniform distribution of

electrons in the bunch

v [pm]

e [no]

® short duration of radiation of a
single electron
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