

Reactivity Computation in Non-Maxwellian Plasmas: Concepts and Proposals

Vojtěch Horný, Ladislav Drška, Milan Šiňor

Czech Technical University in Prague, Faculty of Nuclear Sciences & Dept. of Physical Engineering, Břehová 7, 115 19 Prague 1, Czech Republic

Formulas for Reactivity Computation

Reactivity is a crucial quantity for thermonuclear fusion reaction rate computation and is defined as

$$\langle \sigma v \rangle = \int_0^\infty \sigma(v) v f(v) \, \mathrm{d}v.$$
 (1)

If Maxwellian distribution of particles is supposed, the following expression could be used:

$$\langle \sigma v \rangle = \frac{4\pi}{(2\pi m_r)^{1/2}} \frac{1}{(k_B T)^{3/2}} \int_0^\infty \sigma(\varepsilon) \varepsilon \exp\left(-\frac{\varepsilon}{k_B T}\right) \,\mathrm{d}\varepsilon. \tag{2}$$

Moreover, there are many different parametrizations of Maxwellian reactivity in dependence on the plasma's temperature. There is introduced the Bosch&Hale parametrization:

$$\langle \sigma v \rangle = C_1 \theta \sqrt{\frac{\xi}{m_r c^2 T^3}} \exp(-3\xi),$$

$$\theta = T / \left(1 - \frac{T(C_2 + T(C_4 + TC_6))}{1 + T(C_3 + T(C_5 + TC_7))} \right),$$

$$\xi = \sqrt[3]{\frac{\varepsilon_G}{4\theta}}.$$
(3)

Set of non-Maxwellian Distributions

This project investigates thermonuclear fusion reaction rate in dependence on temperature for reactions D(d,n)³He, D(d,p)T, T(d,n) α ,³He(d,p) α , ¹¹B(p, α)2 α and ¹⁴N(p, γ)¹⁵O. Possible modifications of nuclear processes so as to increase the reaction rate are discused for reactions $D(d,n)^{3}$ He and carbon burning.

The positions of graphs and colours of lines agree with the figure on the left side. The most precise seems to be to compute reactivity by Bosch&Hale parametrization formula for light nuclei

The most effective is to run DT reaction at tempetrature 64 keV.

Reaction Rate Amplification in Plasma with Strong Screening

Acknowledgements

We thank the organization comitee for the opportunity to attend this 49th Course Atoms and Plasmas in Super-Intense Laser fields and for the possibility to present own poster.

References

- [1] Nuclear Astrophysics Data. Los Alamos National Laboratory, June 2011. http://t2.lanl.gov/data/astro/astro.html
- [2] Atzeni, S.; ter Vehn, J. M.: The physics of inertial fusion: beam plasma interaction, hydrodynamics, hot dense matter. International series of monographs on physics, Oxford University Press, 2004, ISBN 9780198562641.
- [3] Belyaev, V.; Vinogradov, V.; Matafonov, A.; aj.: Excitation of promising nuclear fusion reactions in picosecond laser plasmas. Physics of Atomic Nuclei, Volume 72, No. 7, 2009: s. 1077–1098, ISSN 1063-7788.
- [4] Bosch, H.-S.; Hale, G.: Improved formulas for fusion cross-sections and thermal reactivities. Nuclear Fusion, Volume 32, No. 4, 1992: site 611. http://stacks.iop.org/0029-5515/32/i=4/a=I07
- [5] Gasques, L.; Afanasjev, A.; Aguilera, E.; aj.: Nuclear fusion in dense matter: Reaction rate and carbon burning. Physical Review C, Volume 72, No. 2, 2005: site 025806.
- [6] Kaniadakis, G.; Lavagno, A.; Lissia, M.; aj.: Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos. Brazilian Journal of Physics, ISSN 0103-9733.