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Localization of compressional Alfve ´n eigenmodes in spherical tori
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Edge-localized compressional Alfve´n eigenmodes~CAE! may be responsible for the observed
emission in the ion cyclotron frequency range in the National Spherical Torus experiments~NSTX!
@M. Ono et al., Nucl. Fusion40, 557 ~2000!#. These modes can be driven unstable by resonant
interaction with a small population of energetic ions, having an anisotropic distribution in velocity
space. In the present paper, the radial and poloidal structure of these eigenmodes is analyzed, by
solving the eigenmode equation using a variational approach. The analysis shows that CAE are
radially and poloidally localized near the plasma edge and have eigenfrequencies in the range
corresponding to experimentally measured frequencies in NSTX. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1566441#
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I. INTRODUCTION

Edge-localized compressional Alfve´n eigenmodes
~CAE! are currently considered as the main candidate to
plain the experimentally observed emission in the ion cyc
tron frequency range,1 in the National Spherical Torus ex
periments~NSTX!.2 CAE can be destabilized by resona
interaction with a subpopulation of energetic ions@neutral
beam injection~NBI! or ion cyclotron resonance heatin
~ICRH! produced ions#, having an anisotropic distribution in
velocity space near the outer edge of the plasma. Local
modes are important not only to explain the observed em
sion, but also because these modes might open a possi
for transferring energy from the fusion products directly
the background ions.

Initial investigations of the localization of the CAE wer
performed assuming large aspect ratio and frequencies m
higher than the ion cyclotron frequency.3,4 Detailed studies in
the limit of circular cross section and infinite aspect ratio5,6

have shown that inclusion of the Hall term affects the mo
solutions and introduces a dependence on the sign of
poloidal phase velocity. In Ref. 7 the two-dimensional~2D!
eigenmode equation, without the Hall term, was analy
assuming circular cross section. The results indicated tha
CAE are localized both radially and poloidally close to t
outer midplane edge of the tokamak.

The effects of noncircular cross section, different plas
density profiles and the presence of fast ions were inclu
in Ref. 8, in the limit of infinite aspect ratio, showing th
localization of waves of both signs of the poloidal pha
velocity is possible provided that the plasma density exce
a critical magnitudeNcr at the outer edge. In Ref. 9 a 2D
eigenmode analysis was performed, including the symm
breaking Hall term, the effect of elliptic cross section, fin
aspect ratio and finite parallel wave number. Radially a
poloidally localized eigenmodes were found if certain con
tions were satisfied. Localization of waves with both signs
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the poloidal phase velocity was found to be possible in
finite aspect ratio tokamak with high ellipticity.

The observation of sub-ion cyclotron emission in NST
at frequencies about half of the ion cyclotron frequency, ca
for an extension of the previous eigenmode analysis to
valid also in this frequency range. Ref. 10, analyzed the C
dispersion in low aspect ratio plasmas, with a number
assumptions, some of which might be of crucial importan
for the results.

In the present work we extend the eigenmode analysi
be valid for low mode numbers in spherical tokamak geo
etry and for frequencies below the ion cyclotron frequen
by using a variational method as in Ref. 10, but with a d
ferent Lagrangian functional. In particular, we will keep th
Hall term and analyze its effect on the solutions.

The structure of the paper is the following: In Sec. II th
2D eigenmode equation of the CAE is derived. In Sec.
the eigenmode equation is analyzed with a variational
proach. Section IV uses the variational equations to obtain
approximate expression for the eigenmode frequency,
Sec. V presents the numerical solutions to the variatio
equations. Finally, Sec. VI summarizes our results.

II. THE EIGENMODE EQUATION

We consider compressional Alfve´n waves with small
parallel wave vector (ki!k') and with the wave frequency
in the rangev;vci!vce , wherevci and vce are the ion
and electron cyclotron frequencies, respectively. The eig
mode equation for the perturbed magnetic field in a co
inhomogeneous and magnetized plasma with one ion spe
can be obtained from the Maxwell equations

¹3B5
4p

c
J, ~1!

¹3E5
iv

c
B, ~2!
7 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



e
d

ic
e

el

e
en

al

e
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where it is assumed that the perturbed quantitiesX depend on
time as exp(2ivt), v is the wave frequency.

Let us introduce the elliptic-toroidal coordinatesr, q
andw, defined by

x5~R01r cosq!sin w,

y5~R01r cosq!cosw, ~3!

z5kr sin q,

where r is a radial coordinate,q is the modified poloidal
angle,w is the toroidal angle,R0 is the major radius of the
torus, andk is the ellipticity of the flux surface defined as th
ratio of major to minor radius of the ellipse. The correspon
ing Ei andBi are the covariant components ofE andB. The
current in Eq.~1! is Ji5s i j Ej , ands i j is the conductivity
tensor being related to the dielectric tensore i j through e i j

5d i j 1 i4ps i j /v. The conductivity tensor and the metr
tensorgi j in elliptic-toroidal coordinates can be found in th
Appendix.

We assume vanishing parallel electric field (Ew1Eq /q
.0), where the safety factor isq5dF/dC, and F and
C are the toroidal and poloidal magnetic fluxes, respectiv
Furthermore we assume toroidal variation asX
}exp(2inw), wheren is the toroidal mode number, and w
adopt a ballooning representation for the poloidal dep
dence, cf. Ref. 11

X~r,q!5 (
j 52`

`

X̂~r,q12p j !einq(r)(q12p j ), ~4!

whereq(r) is the safety factor. We assume thatj 50 is the
dominant component.

We use Eq.~2! to expressBr andBq in terms ofEr , Eq

and derivatives ofEq and insert this into Eq.~1! to get

]Bw

]r
5S in2

c

v

rk

R
g111

4pAg

c
s11DEr1S in2

c

v

rk

R
b1

1
4pAg

c
s12DEq , ~5!
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]Bw

]q
5S in2

c

v

rk

R
g211

4pAg

c
s21DEr1S in2

c

v

rk

R
b2

1
4pAg

c
s22DEq , ~6!

whereb1 andb2 are

b15g11
q8

q2
2

g11

nqwr
2

g12

nqwq
, ~7!

b25g12
q8

q2
2

g12

nqwr
2

g22

nqwq
, ~8!

and wr and wq are the characteristic radial and poloid
length scales ofÊq , respectively. The two last terms inb1

andb2 can be neglected if

wr@
n

q

rk

R2

vA
2~vci

2 2v2!

vciv
3

~9!

and

wq@
n

q

k2

R2

vA
2~vci

2 2v2!

vciv
3

, ~10!

which is satisfied in the parameter range of interest.
We now use Eq.~1! together with Eqs.~5! and ~6! to

express the covariant components of the electric field,Er and
Eq , in terms of the toroidal covariant component of th
magnetic fieldBw

Er52
1

cn
S a4

]Bw

]r
1a2

]Bw

]q D , ~11!

Eq5
1

cn
S a3

]Bw

]r
1a1

]Bw

]q D , ~12!

where the constantsaj are
S a1 a2

a3 a4
D 5exx

v

c S 2Rv/vci2 iAgg12~Kn11! 2Agg12Knq8/q22 iAgg22

2 iAgg11~Kn11! Rv/vci2Agg11Knq8/q22 iAgg21D ~13!
and

cn5a1a42a2a3 , ~14!

Kn5
n2vA

2

R2vci
2

v22vci
2

v2
, ~15!

g5det gi j 5r 2R2k2, and R5R01r cosq. The dielectric
tensor elements in Cartesian coordinates with thez axis par-
allel to the magnetic field can be simplified to
exx5eyy5
vpi

2

vci
2 2v2

, exy52eyx5 i
v

vci
exx , ~16!

wherevpi is the ion plasma frequency.
Taking the third component of Eq.~2!

]Eq

]r
2

]Er

]q
5 i

v

c

Ag

R2
Bw , ~17!

and using Eqs.~11! and ~12!, we arrive at the following
eigenmode equation forBw :
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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]

]r H 1

cn
S a3

]Bw

]r
1a1

]Bw

]q D J
1

]

]q H 1

cn
S a4

]Bw

]r
1a2

]Bw

]q D J 5
iv

c

Ag

R2
Bw , ~18!

whereBw.RBi2Bq /q is the toroidal component of the pe
turbed magnetic field. We now assume thatq8/q2 is not very
large and make the approximationKn!1, which is accept-
able if n is low. Using the ballooning representation~4! for
Bw the eigenmode equation~18! can now be rewritten as

ic

v H ]

]r
F 1

cn
S a3

]B̂

]r
1a1

]B̂

]q
D G1

]

]q
F 1

cn
S a4

]B̂

]r

1a2

]B̂

]q
D G1

inqq8

cn
F2a3

]B̂

]r
1~a11a4!

]B̂

]q
G

1
inq

cn
F ~a11a4!

]B̂

]r
12a2

]B̂

]q
G J 1V~r,q!B̂50. ~19!

The potentialV(r,q)5H1 iG becomes

H~r,q!5
Ag

R2
2n2~q2g2212qq8qg121~q8!2q2g11!

3
vA

2Ag

v2R2
1

n

v S q
]

]r
2qq8

]

]q D S vA
2

Rvci
D ~20!

and

G~r,q!5
n

v2 F S g9q1q8q
]

]r D S vA
2Agg11

R2 D
1S q

]

]r
12nq81q8q

]

]q D S vA
2Agg12

R2 D
1q

]

]q S vA
2Agg22

R2 D G . ~21!

In Eq. ~19!, toroidal effects have been included invA and
vci through the poloidal dependence of the equilibrium m
netic field, which is assumed to fall off as 1/R. The term inH
involving derivatives with respect tor andq originates from
the Hall term, which has been included in the infinite asp
ratio limit in Refs. 5, 6, and 8. Note that this term breaks
poloidal symmetry even when the inverse aspect ratio is n
ligibly small. This term is large at the edge, where the plas
density profile is steep and its derivative is large.

III. VARIATIONAL ANALYSIS

For realB̂, the Lagrangian corresponding to Eq.~19! is
given by

L5j~r,q!Fg11S ]B̂

]r
D 2

1g22S ]B̂

]q
D 2

12g12S ]B̂

]r
D S ]B̂

]q
D G

1H~r,q!B̂2, ~22!

where
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j52Agexx /cn52
rkvA

2

Rv2
. ~23!

Let L5*drdqL(r0 ,D,q0 ,h) and assume an ansatz fun
tion of the form

B̂~r,q!5B0hsS r2r0

D DhpS q2q0

h D , ~24!

wherehs(x)5Hs(x)e2x2/2 andHs(x) is the Hermite polyno-
mial of degrees. The variational principledL50 now deter-
mines the localization radiusr0 , the radial localization width
D, the localization angleq0 , the poloidal localization width
h and the eigenmode frequencyv. The equation]L/]q0

50 for the variation with respect toq0 has the solutionq0

50, and to find the rest of the parameters we expa
H(r,q,v) aroundr0 andq0 and assume thatj(r,q,v) is
slowly varying aroundr0 and q0 . The variations with re-
spect tor0 , D, h andB0

2 now give the following set of four
equations:

4
]H

]r U
r0 ,q0

1 f sD
2
]3H

]r3U
r0 ,q0

1 f ph2
]3H

]q2]r
U

r0 ,q0

5
2j~r0 ,q0 ,v!

h2r0
3 @2k22f p1h2~12k22!

3~10p222p13!#, ~25!

]2H

]r2U
r0 ,q0

D4

j~r0 ,q0 ,v!
522h2f p~12k22!, ~26!

]2H

]q2U
r0 ,q0

D2h4r0
2

j~r0 ,q0 ,v!
52D2k221h4r0

2f s~12k22!, ~27!

24H~r0 ,q0 ,v!h2D2r0
2j~r0 ,q0 ,v!21

5h2r0
2f s~42h2f p~12k22!!1D2~4k22f p

1h2~12k22!~10p222p13!!, ~28!

which determine the four parametersv, r0 , h, andD. Here
we have used the notationf N52N11.

The main difference between Ref. 10 and our work is
different Lagrangian functionals, caused by the choice of
larization and the neglect of the Hall term in Ref. 10. T
different Lagrangians will naturally lead to considerably d
ferent results, both the resulting eigenmode frequency
the radial and poloidal localization parameters will be diffe
ent.

IV. EIGENMODE SOLUTIONS

We will here perform a simplified analysis using Eq
~26!–~28! neglecting the Hall term and theq8-terms, to ob-
tain an approximate expression for the eigenfrequency.
assume thatn, s andp are low.H then becomes
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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H5
Ag

R2 S 12n2q2g22
vA

2

v2D . ~29!

By evaluating the second derivatives ofH and rewriting Eqs.
~26! and~27! neglecting the small second terms on the rig
hand sides we get

2
r0v2

RvA
2

1
n2q2

k2r0
2

1

R
~2~k2R2R0!1r0!5

2

k2h4r0
2

~30!

and

v2

vA
2

R0

r0R2
1

n2q2

k2r0
2

R0
215R0r0110r0

2

r0
2R2

5
1

D4
, ~31!

whereR5R01r0 . Equation~28! becomes

S v

vA
D 2

5S nq

kr0
D 2

1
f s

D2
1

f p

k2h2r0
2

1
12k22

4r0
2 ~10p222p13!.

~32!

For low n, s andp the first term on the right hand side of E
~32! is dominant. Using that term to approximatev2/vA

2 in
~30! and ~31! gives us expressions forh and D, which in-
serted in~32! result in the eigenfrequency

v unu,s,p.
vA

r0
An2q2

k2
1kp1

unuq
k

asp, ~33!

wherekp andasp are

kp5~12k22!~10p222p13!/4,

asp5 f s~r0 /R!A11~31R0 /r0!21 f pA12R0 /~k2R!.

In expression~33!, in contrast to the case of a convention
tokamak with circular cross section, the second and th
terms are of the same order as the first one, unlessn is large.

Inserting ~33! into Eqs.~30! and ~31! we obtain better
approximations for the localization widths:

1

D4
5

1

r0
2R2 Fn2q2

k2 S S R0

r0
13D 2

11D
1S kp1

unuq
k

aspD R0

r0
G , ~34!

1

h4
5n2q2S k22

R0

R D2
k2

2

r0

R S kp1
unuq

k
aspD . ~35!

For moderates or p, we see that Eq.~35! yields an
imaginary value ofh2, and thus we have no solution to ou
eigenmode equation. This does not necessarily mean
such a set of parameterss andp is unphysical, though. Ther
could be eigenmodes that are simply spread out poloid
For highs andp, Eqs.~34! and~35! are not valid because o
our assumptions.

We can now proceed to calculate the frequency splitt
due to discreten, s, and p. The experimentally observe
peaks of NSTX shot #103701 appear in two bands, span
0.7–1.2 MHz and 1.5–2.2 MHz. The peaks are separate
a spacing of about 120 kHz. Parameters relevant to
Downloaded 01 Oct 2003 to 129.16.123.202. Redistribution subject to A
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NSTX experiment are: Major radiusR0585 cm, minor ra-
diusa565 cm, ellipticityk51.6, ion cyclotron frequency a
the edge f ci52.3 MHz and Alfvén velocity at the edge
vA,edge5108 cm/s.

The frequency splitting because of the toroidal mo
numbern is according to Eq.~33! determined by

v unu11,s,p
2 2v unu,s,p

2 5
vA

2q2

k2r0
2 S ~2unu11!1

k

q
aspD . ~36!

Assumingr0545 cm andq51.2 at the localization point we
obtain a frequency splitting forn525 of about 270 kHz.

The splitting due to the radial quantum numberss be-
comes

v unu,1,0
2 2v unu,0,0

2 52vA
2 unuq/~kr0R!A11~31R0 /r0!2,

~37!

giving D f s.420 kHz forn525, and the splitting due to the
poloidal quantum number is

v unu,0,1
2 2v unu,0,0

2 52
vA

2

r0
2 ~12k221unuq/kA12R0 /~k2R!!,

~38!

which givesD f p.260 kHz forn525.
Note, that in deriving the simplified expression for th

eigenfrequency we have assumed low poloidal quan
numbers,p, ~since the higher ones lead to eigenmode f
quencies which are higher than the ion cyclotron frequenc!,
while Ref. 10 assumes largep ~denoted bym in Ref. 10!.

V. NUMERICAL RESULTS

For the numerical solutions of the variational equatio
we have modeled the plasma density profile byn(r)}(1
2(r/a)2)s, with s50.5 ors51. The magnetic field is ap
proximately B(R)5B0R0 /R in the low to medium beta
NSTX plasmas,10 where B0 is the magnetic field at the
plasma center. Theq-profile is here modeled byq5q0(1
2b(r/a)2)2a, whereb512(q0 /qa)1/a.

The system of variational equations~25!–~28! was
solved numerically, and localized solutions were found w
frequencies less than the ion cyclotron frequency at the
board edge of the plasma. Localization radii and eigenm
frequencies for numerical solutions using the parameter
uess50.5, q051, qa55, anda51/8 are shown in Fig. 1.

Note that no solution was found for the casen524, s
51, p50. The numerics show that this is due to theq8-terms
in H. If they had been neglected, we would have got a so
tion for this setup of mode numbers too.

Figure 2 shows the values of the localization widthsD
and h from the same calculations. We see that the eig
modes are generally more localized for higherunu. For
highers andp the poloidal localization width becomes larg
and the radial localization width gets smaller. Also note th
although Eq.~35! is a simplified expression forh, it behaves
qualitatively in the same way as the numerical solutions.h is
for instance more sensitive tos than it is top.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The coupling betweenj and j 61 terms in the ballooning
representation~4! is small because of the small values of t
poloidal localization widthh. This is analyzed in more deta
in Ref. 10.

The frequency splitting due ton is roughly in agreemen
with the simplified analysis in Sec. IV. Then-splitting is
about 240 kHz, while thes-splitting is 500 kHz and the
p-splitting is 180 kHz forn525. The discrepancy betwee

FIG. 1. Solutions of the variational equations withs50.5 for the three
cases$s50, p50% ~a Gaussian magnetic field ansatz!, $s51, p50% and
$s50, p51%. The arrows forunu start at the solution wheren524 and
point towards higherunu, except for $s51, p50%, where it starts atn
525. For $s51, p50, n524% no solution was found.

FIG. 2. TheD andh values of the same solutions as in Fig. 1.n524 for
the rightmost solutions in the cases$s50, p50% and$s50, p51%, and for
$s51, p50% the rightmost solution isn525. unu increases towards the
left.
Downloaded 01 Oct 2003 to 129.16.123.202. Redistribution subject to A
the simplified analysis and the numerics is mainly a resul
neglecting the Hall term in Sec. IV.

As can be seen in Fig. 1, a combination of the low
order eigenmode with higher order Hermite polynom
modes may explain that the NSTX experiment has den
peaked spectrum than our calculatedn splitting.

Other numerical solutions of the variational equatio
show that, though the localization radius is rather insensi
to the mode numbers, it depends on the density parametes.
For s50.5, the eigenmode structure is radially wider a
localized closer to the edge, compared tos51. Theq-profile
also affects the numerical solutions. The effect of increas
qa and a is that the localization radius decreases and
eigenmode frequency increases.

Because of the Hall term, the solutions are not symme
cal with respect to the sign of the toroidal mode number. F
n.0, no solutions were found numerically. The existence
localized solutions is affected by the sign of the Hall ter
which depends on the radial derivative of the magnetic fi
and the density profile.

VI. CONCLUSION

The present analysis shows that the poloidally and ra
ally edge-localized CAE have eigenfrequencies in the ra
corresponding to experimentally measured frequencies
NSTX. The solutions for higher toroidal mode numbers a
better localized. A combination of the lowest mode a
higher order Hermite polynomial eigenmodes may expl
the frequency splitting between the peaks in the experim
tally observed spectrum. The Hall term breaks the symme
with respect to the sign ofn, and excludes solutions for pos
tive n.

For relating with the NSTX experimental data, apa
from wave localization, also the resonance condition ne
to be satisfied and a positive growth rate has to be fou
These issues are out of the scope of this paper.
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APPENDIX: THE METRIC AND CONDUCTIVITY
TENSORS

In a tokamak plasma with elliptical cross section we u
elliptic-toroidal coordinates, with the contravariant metr
tensor, cf. Ref. 12

g115k22sin2 q1cos2 q,

g225~sin2 q1k22cos2 q!/r2,

g125g215~k2221!sin q cosq/r,
~A1!

g335R22,

g135g315g235g3250,

Ag5krR,
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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wherek is the ellipticity of the flux surface defined as th
ratio of major to minor radius of the ellipse andg is the
determinant of the covariant metric tensor.

In Cartesian coordinates withẑiB0 the conduc-
hy

Downloaded 01 Oct 2003 to 129.16.123.202. Redistribution subject to A
tivity tensor has the elementssxx5syy5szz and
syx52sxy and the rest of the elements are zero. Transfo
ing this to the elliptic-toroidal coordinate system we c
write the contravariant conductivity tensors i j as
s i j 5S sxxg
11 sxxg

121sxyqd1d2 2sxyg
11d2 /d1

sxxg
212sxyqd1d2 sxxg

22 2sxyg
11d2 /d1

sxyg
11d2 /d1 sxyg

11d2 /d1 sxxg
33

D , ~A2!

whered15R/(rk) and 1/d2
25q2R21r2k2g11. In our case, assuming that (Rq/(rk))2@1, we can use the approximation

s i j 5S sxxg
11 sxxg

121sxy~rk!21 0

sxxg
122sxy~rk!21 sxxg

22 0

0 0 sxxg
33
D . ~A3!
s-
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9T. Fülöp, YA. I. Kolesnichenko, M. Lisak, and D. Anderson, Phys. Pla
mas7, 1479~2000!.

10N. N. Gorelenkov, C. Z. Cheng, and E. Fredrickson, Phys. Plasma9,
3483 ~2002!.

11R. D. Hazeltine and J. D. Meiss,Plasma Confinement~Addison-Wesley,
Redwood City, 1992!, p. 203.

12YA. I. Kolesnichenko, V. V. Parail, and G. V. Pereverzev,Reviews of
Plasma Physics~Consultants Bureau, New York, 1992!, Vol. 17, p. 1.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp


