PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003

Localization of compressional Alfve "n eigenmodes in spherical tori
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Edge-localized compressional AlfveeigenmodegCAE) may be responsible for the observed
emission in the ion cyclotron frequency range in the National Spherical Torus experifN&TX)

[M. Ono et al, Nucl. Fusion40, 557 (2000]. These modes can be driven unstable by resonant
interaction with a small population of energetic ions, having an anisotropic distribution in velocity
space. In the present paper, the radial and poloidal structure of these eigenmodes is analyzed, by
solving the eigenmode equation using a variational approach. The analysis shows that CAE are
radially and poloidally localized near the plasma edge and have eigenfrequencies in the range
corresponding to experimentally measured frequencies in NSTX20@3 American Institute of
Physics. [DOI: 10.1063/1.1566441

I. INTRODUCTION the poloidal phase velocity was found to be possible in a
. . . finite aspect ratio tokamak with high ellipticity.
Edge-localized compressional Alfve eigenmodes The observation of sub-ion cyclotron emission in NSTX

(CAE) are currently considered as the main candidate to exat frequencies about half of the ion cyclotron frequency, calls
plain the experimentally observed emission in the ion cyclofor an extension of the previous eigenmode analysis to be
tron frequency rangé,in the National Spherical Torus ex- valid also in this frequency range. Ref. 10, analyzed the CAE
periments(NSTX).? CAE can be destabilized by resonant dispersion in low aspect ratio plasmas, with a number of
interaction with a subpopulation of energetic idmeutral  assumptions, some of which might be of crucial importance
beam injection(NBI) or ion cyclotron resonance heating for the results.

(ICRH) produced ionk having an anisotropic distribution in In the present work we extend the eigenmode analysis to
velocity space near the outer edge of the plasma. Localizege valid for low mode numbers in spherical tokamak geom-
modes are important not only to explain the observed emisetry and for frequencies below the ion cyclotron frequency,
sion, but also because these modes might open a possibiliBy using a variational method as in Ref. 10, but with a dif-

for transferring energy from the fusion products directly toferent Lagrangian functional. In particular, we will keep the

the background ions. Hall term and analyze its effect on the solutions.

Initial investigations of the localization of the CAE were The structure of the paper is the following: In Sec. Il the
performed assuming large aspect ratio and frequencies mugip eigenmode equation of the CAE is derived. In Sec. IlI,
higher than the ion cyclotron frequen%:@DetaiIed studies in the eigenmode equation is ana|yzed with a variational ap-
the limit of circular cross section and infinite aspect raffo, proach. Section IV uses the variational equations to obtain an
have shown that inclusion of the Hall term affects the mOinpproximate expression for the eigenmode frequency, and
solutions and introduces a dependence on the sign of thgec. v presents the numerical solutions to the variational

poloidal phase velocity. In Ref. 7 the two-dimensiof@D)  equations. Finally, Sec. VI summarizes our results.
eigenmode equation, without the Hall term, was analyzed

assuming circular cross section. The results indicated that the
CAE are localized both radially and poloidally close to the
outer midplane edge of the tokamak. ll. THE EIGENMODE EQUATION
The effects of noncircular cross section, different plasma e consider compressional Affsewaves with small
density profiles and the presence of fast ions were includegara”e| wave vectorkj<k, ) and with the wave frequency
in Ref. 8, in the limit of infinite aspect ratio, showing that ;, the rangew~ wy<wee, Wherew,, and w, are the ion
. . . . Cl ce» Cl ce
localization of waves of both signs of the poloidal phase;ng electron cyclotron frequencies, respectively. The eigen-
velocity is possible provided that the plasma density exceeds,yqe equation for the perturbed magnetic field in a cold,

a critical magnitudeN,; at the outer edge. In ReB a 2D jhhomogeneous and magnetized plasma with one ion species
eigenmode analysis was performed, including the symmetrya, we obtained from the Maxwell equations
breaking Hall term, the effect of elliptic cross section, finite

aspect ratio and finite parallel wave number. Radially and T
poloidally localized eigenmodes were found if certain condi- VxB= T‘]- @
tions were satisfied. Localization of waves with both signs of

i
] ] VXE=—B, 2
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where it is assumed that the perturbed quantiXiegepend on
time as exptint), o is the wave frequency.

Let us introduce the elliptic-toroidal coordinates ¥
and ¢, defined by

X=(Rg+p cosd)sin ¢,
=(Rp+p cosJ)cos e, 3

Z=kp Sin 9,

where p is a radial coordinatey is the modified poloidal
angle, ¢ is the toroidal angleR, is the major radius of the
torus, andk is the ellipticity of the flux surface defined as the

ratio of major to minor radius of the ellipse. The correspond-

ing E; andB; are the covariant componentsifandB. The
current in Eq.(1) is Ji—o"JE ando' is the conductivity
tensor being related to the dlelectnc tengdr through €'/
=& +id4mo'/w. The conductivity tensor and the metric
tensorg'! in elliptic-toroidal coordinates can be found in the
Appendix.

We assume vanishing parallel electric fiel (E,/q
=0), where the safety factor ig=d®/d¥, and ® and

Smith et al.
ﬁB‘P_ . ,CpK 477\/6 ” ,C pK
ﬁ—(ln R TO‘ E +|in _ﬁbz

477\/6
TO.ZZ) 9 (6)
whereb,; andb, are
, 11 12
b :gllq__g__ 9 (7)
1 2 Naw, nqw,
, 12 22
by =g — I~ 2 ®
2 g2 Nnaw, nqw,

andw, and wy are the characteristic radial and poloidal
length scales oE,, respectively. The two last terms by
andb, can be neglected if

¥ are the toroidal and poloidal magnetic fluxes, respectivelyand

Furthermore we assume toroidal variation aX
xexp(—ing), wheren is the toroidal mode number, and we

adopt a ballooning representation for the poloidal depen-

dence, cf. Ref. 11

)

X(p,9)= 2 X(p,0+2m])enin(v+2m), (4)
J=—>
whereq(p) is the safety factor. We assume thatO0 is the
dominant component.
We use Eq(2) to expres8, andB in terms ofE,, E,

2
npk va(wi—w )
w, > P_ A( ci 9)
AR? wyw
W >EK_UA((0C|_Q)2) (10)
o AR  wo° '

which is satisfied in the parameter range of interest.

We now use Eq(1) together with Eqs(5) and (6) to
express the covariant components of the electric fiejcand
Es, in terms of the toroidal covariant component of the
magnetic fieldB,,

and derivatives oE 3 and insert this into Eq1) to get E — 1 ay ¢ By © fa, ¢ By ) (11)
"¢, d v
0B C pk 4 C pkK "
i '”ZZPR i A8 Ept|in®2 pﬁbl 1/ B, B
p Ey=— agﬁ“’ al(w) (12
n
477\/5 12| 5)
LN where the constants; are
|
(al a, o[ —Rolog—iJgg¥(Ke+1)  —Vgg*K,q'/g?~i/gg? ) .
=€ —_—
a; ay c ~iVgg(K,+1) Ro/wei—/g9"Knq'/o?—igg?
|
and w2
I .
Exx= Eyy= _p 2 EyT T e 6, (16)
Ch=a,a,— a,as, (14 cl ¢
wherew,; is the ion plasma frequency.
n22 w?—w? Taking the third component of Eq2)
e R (15
Riwg o JEy JE, o f a
op a9 'c Rz

g=detg;;=r’R*«?, and R=Ry+p cosd. The dielectric
tensor elements in Cartesian coordinates withzth&is par-
allel to the magnetic field can be simplified to

and using Eqs(11) and (12), we arrive at the following
eigenmode equation fd3,, :
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L[, By, By
%c_ &7, alaﬂ

Jg (1 B, 4B iw g
aﬁ( qa, T aﬁ”_FEB (18)
whereB,=RB,—B;/q is the toroidal component of the per-

turbed magnetic field. We now assume thatqg? is not very
large and make the approximatitt, <1, which is accept-
able if n is low. Using the ballooning representatiof) for
B, the eigenmode equatiqid8) can now be rewritten as
ic| o B
ap %4 p

1
Cn

L0
g0

1 B 4B
e\ &, gy
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2
_ PKUA

—Jgen/c,= . (23)
sz

Let £L=[dpddL(pg,A,3y,7) and assume an ansatz func-
tion of the form
J— g
5

Y

P~ Po
A

B(p, &)= Bohs( (24)
wherehy(x) =H(x)e *"2 andH(x) is the Hermite polyno-
mial of degrees. The variational principleL=0 now deter-
mines the localization radiys,, the radial localization width
A, the localization anglé},, the poloidal localization width
n and the eigenmode frequeney. The equationdL/dd
=0 for the variation with respect t§, has the solutiony,

B indq’ B d .
+a2_1? +— 2a3a_+(a1+a4)% =0, and to find the rest of the parameters we expand
J Cn p H(p,?,w) aroundpy and ¥, and assume that(p, 9, o) is
ing JB 9B A slowly varying aroundpy and 4. The variations with re-
+—|(a;+ay)—+2a,—|({+V(p,)B=0. (19 spect topg, A, n and BS now give the following set of four
Cn ap 9 equations:
The potentiaM(p,¥)=H+iG becomes
oH ,0°H , &°H
Vg 2/ 2022 1 Q120 (/12,0211 4(9_ AT Y
H(p,9)= =5 ~n?(a’g™+ 240’ 99+ (') *0%g™ 0.0 pong | O0%0Rl
UA\/_ n d J Ui :M[Z “2f 4+ 21—k 2)
q——f}q’— =—1 (20 2 3 K Tp™ 7 K
2R2 dp 39/ \ Rwg; 7"Po
and X (10p*—2p+3)], (25)
2 11 2 4
n Ua gg J°H A
G(p,¥)=—; (”ﬁ+ 9 — )— =2-p?fy(1—k"?), 26
(p.9) w? 9 f R? ap? £(po, Y0, 0) 7 el =) @9
po- o
2 12
d \/—9 2 42
q—+2nq +q' 90— )( ) J°H A7°pg _ _
Y R? =2A%k 2+ ppif(1—k72), (2
(9192 o g(po,ﬂo,w) K n pO S( K ) ( 7)
070
UA\/ag22 21)
T R —4H(po, 90, ) n*A%p5E(po, Do, @) !
In Eq.(19), toroidal effects have been includeduig and = 72pof (4= 9t p(1— k) + A% (4x 2
w¢; through the poloidal dependence of the equilibrium mag- + 21— k2)(100%— 2p+3)), 28)

netic field, which is assumed to fall off asRL/The term inH
involving derivatives with respect fo andd originates from  which determine the four parametess p,, 7, andA. Here

the Hall term, which has been included in the infinite aspectye have used the notatidf=2N+ 1.

ratio limit in Refs. 5, 6, and 8. Note that this term breaks the The main difference between Ref. 10 and our work is the
poloidal symmetry even when the inverse aspect ratio is nedifferent Lagrangian functionals, caused by the choice of po-
ligibly small. This term is large at the edge, where the plasmaarization and the neglect of the Hall term in Ref. 10. The
density profile is steep and its derivative is large. different Lagrangians will naturally lead to considerably dif-
ferent results, both the resulting eigenmode frequency and
the radial and poloidal localization parameters will be differ-

1. VARIATIONAL ANALYSIS ent
For realB, the Lagrangian corresponding to Eq9) is
given by
NE: 2 | B 2 o B[ B IV. EIGENMODE SOLUTIONS
L=&(p, 9|9 5] +9 +29 . N o
ap a9 a9 We will here perform a simplified analysis using Egs.
2o (26)—(28) neglecting the Hall term and th# -terms, to ob-
+H(p, 3)B7, (22 tain an approximate expression for the eigenfrequency. We
where assume than, s andp are low.H then becomes
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Vg

1%
H= ?( 1-n’g*g*— (290  diusa=65 cm, ellipticity k= 1.6, ion cyclotron frequency at
w

the edgef,=2.3 MHz and Alfven velocity at the edge

By evaluating the second derivativeskbfand rewriting Eqs. VA edge 10° cm/s. o _
(26) and (27) neglecting the small second terms on the right ~ The frequency splitting because of the toroidal mode

2) NSTX experiment are: Major radiu’,=85 cm, minor ra-

hand sides we get numbern is according to Eq(33) determined by
2 242 2.2
Pow n=q 1 2 2 2 UAq K
———+—— = (2(kK*R—Ry) +pg)= ——— (30 O 180~ O sp=—55| (2IN[+1)+ —asp|.  (36)
Ru2  «?p2 R K22 Inf+1s,p™ “Inls,p K2p? q P
and Assumingpy=45 cm andg= 1.2 at the localization point we
5 5 5 52 2 obtain a frequency splitting fan= —5 of about 270 kHz.
©” Ro  n°0" R+ SRopot 1005 _ i (31) The splitting due to the radial quantum numberbe-
vi poR? szg pSR2 A4 comes
whereR=Ry+ po. Equation(28) becomes w\2n|,1,0_ ‘U|2n\,o,o= 202|n|a/(kpoR)VI+(3+ Ro/po)?,
® 2_ ng\? fg fy 1-k?2 ) (37)
val \xpe) Taz T RN * 4p2 (10p"=2p+3).  giving Af.=420 kHz forn=—5, and the splitting due to the

(32) poloidal quantum number is

For low n, sandp the first term on the right hand side of Eq. ) ) Ui
(32) is dominant. Using that term to approximat@/v2 in  ®fn 01~ @fnj00=2—5 (1= &~ 2+|n|a/k V1= Re/(x°R)),
(30) and (31) gives us expressions faj and A, which in- Po

serted in(32) result in the eigenfrequency (38)
> > which givesAf,=260 kHz forn=—5.
_va_ /M4 Tk m 33 Note, that in deriving the simplified expression for the
@in|,s,p~ 2 p Asp, (33 . >
Po K K eigenfrequency we have assumed low poloidal quantum
herek d numbers,p, (since the higher ones lead to eigenmode fre-
wherek, andasp are quencies which are higher than the ion cyclotron frequgncy
kp=(1—x"2)(10p*—2p+3)/4, while Ref. 10 assumes large(denoted bym in Ref. 10.

asp=fs(po/R)V1+(3+Ry/pg)?+f,V1—Ry/(k°R).

In expression(33), in contrast to the case of a conventional\y NUMERICAL RESULTS
tokamak with circular cross section, the second and third

terms are of the same order as the first one, uniésdarge. For the numerical solutions of the variational equations
Inserting (33) into Egs.(30) and (31) we obtain better we have modeled the plasma density profile rifyp) (1
approximations for the localization widths: —(pla)?)?, with ¢=0.5 oro=1. The magnetic field is ap-

proximately B(R)=ByRy/R in the low to medium beta

i1 1 ﬁ( &+3)2+1 NSTX plasmas? where B, is the magnetic field at the
A4 pgRZ «2 \\ po plasma center. The-profile is here modeled bg=qy(1
—B(pla)?)~“, wherep=1-(do/qa)"".
[n|q Ro The system of variational equation®5)—(28) was
+ ( Kp+ Tasp) Pol’ G4 solved numerically, and localized solutions were found with

frequencies less than the ion cyclotron frequency at the out-

[n|q board edge of the plasma. Localization radii and eigenmode
2 ) (39 frequencies for numerical solutions using the parameter val-

K ueso=0.5, qp=1, q,=5, ande=1/8 are shown in Fig. 1.

For moderates or p, we see that Eq(35) yields an Note that no solution was found for the case —4, s
imaginary value ofy?, and thus we have no solution to our =1, p=0. The numerics show that this is due to tjieterms
eigenmode equation. This does not necessarily mean that H. If they had been neglected, we would have got a solu-
such a set of parametesandp is unphysical, though. There tion for this setup of mode numbers too.
could be eigenmodes that are simply spread out poloidally. Figure 2 shows the values of the localization widths
For highs andp, Egs.(34) and(35) are not valid because of and z from the same calculations. We see that the eigen-
our assumptions. modes are generally more localized for highet. For

We can now proceed to calculate the frequency splittinchighers andp the poloidal localization width becomes larger
due to discreten, s, and p. The experimentally observed and the radial localization width gets smaller. Also note that,
peaks of NSTX shot #103701 appear in two bands, spanninglthough Eq(35) is a simplified expression foy, it behaves
0.7-1.2 MHz and 1.5-2.2 MHz. The peaks are separated byualitatively in the same way as the numerical solutions
a spacing of about 120 kHz. Parameters relevant to thér instance more sensitive ®than it is top.
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FIG. 1. Solutions of the variational equations with=0.5 for the three
cases{s=0, p=0} (a Gaussian magnetic field ansatzs=1, p=0} and
{s=0, p=1}. The arrows for|n| start at the solution whera=—4 and
point towards highein|, except for{s=1, p=0}, where it starts an

=—5. For{s=1, p=0,n=—4} no solution was found.

1.2
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the simplified analysis and the numerics is mainly a result of
neglecting the Hall term in Sec. IV.

As can be seen in Fig. 1, a combination of the lowest
order eigenmode with higher order Hermite polynomial
modes may explain that the NSTX experiment has denser
peaked spectrum than our calculatedplitting.

Other numerical solutions of the variational equations
show that, though the localization radius is rather insensitive
to the mode numbers, it depends on the density pararaeter
For 0=0.5, the eigenmode structure is radially wider and
localized closer to the edge, comparedrte 1. Theg-profile
also affects the numerical solutions. The effect of increasing
g, and « is that the localization radius decreases and the
eigenmode frequency increases.

Because of the Hall term, the solutions are not symmetri-
cal with respect to the sign of the toroidal mode number. For
n>0, no solutions were found numerically. The existence of
localized solutions is affected by the sign of the Hall term,
which depends on the radial derivative of the magnetic field
and the density profile.

VI. CONCLUSION

The present analysis shows that the poloidally and radi-
ally edge-localized CAE have eigenfrequencies in the range
corresponding to experimentally measured frequencies in

The coupling betweepandj+1 terms in the ballooning  NSTX. The solutions for higher toroidal mode numbers are
representatio®d) is small because of the small values of the yetier |ocalized. A combination of the lowest mode and

in Ref. 10.

The frequency splitting due tois roughly in agreement
with the simplified analysis in Sec. IV. The-splitting is
about 240 kHz, while thes-splitting is 500 kHz and the
p-splitting is 180 kHz fom= —5. The discrepancy between

0.6
% s=0, p=1
s=1, p=0 +
05} |n{/ O $=0,p=0
n +a|e
O
0.4} *
O
0-3 r r r r
12 14 16 18 20
Alcm

FIG. 2. TheA and » values of the same solutions as in Fignk —4 for
the rightmost solutions in the casgs=0, p=0} and{s=0, p=1}, and for
{s=1, p=0} the rightmost solution i;1=—5. |n| increases towards the

left.

22

the frequency splitting between the peaks in the experimen-
tally observed spectrum. The Hall term breaks the symmetry
with respect to the sign af, and excludes solutions for posi-
tive n.

For relating with the NSTX experimental data, apart
from wave localization, also the resonance condition needs
to be satisfied and a positive growth rate has to be found.
These issues are out of the scope of this paper.
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APPENDIX: THE METRIC AND CONDUCTIVITY
TENSORS

In a tokamak plasma with elliptical cross section we use
elliptic-toroidal coordinates, with the contravariant metric
tensor, cf. Ref. 12

g*'=k?sir? 9+cos 9,
922=(sir? 9+« 2c0€ §)/p?,
g%=g?'=(k"2-1)sin ¥ cosV/p,

g®=R"2, (A1)

g13=g¥l=g%=g¥?=0,

g=«pR,
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where « is the ellipticity of the flux surface defined as the tivity tensor has the elementso,=o,,=0,, and

ratio of major to minor radius of the ellipse amis the  ¢,,=— oy, and the rest of the elements are zero. Transform-

determinant of the covariant metric tensor. ing this to the elliptic-toroidal coordinate system we can
In Cartesian coordinates withz|B, the conduc- write the contravariant conductivity tensot as

(Txxg:L1 Uxxglz+ Oxyd did, - nyglle /d,
gl= a'xxgz:L_ Oxyd d1d; O.XX922 - nyglldz /dy |, (A2)
nyglldz /d, nyglle /d, 0'xe33

whered; =R/(p«) and 165=q?R?+ p?«x?g*%. In our case, assuming thaR ¢/(p«))?>1, we can use the approximation

0'xxgll Uxxglz+ ny(PK)il 0
oll= Uxxglz_ ny(PK) -t Uxxgzz 0 . (A3)
0 0 Uxxg33
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