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Abstract —A detailed discussion is given of the effects of energy diffusion and pitch-angle scattering on
the slowing-down dynamics of a beam of monoenergetic particles being released with unidirectional
velocity. Approximate solutions are given for characteristic averaged quantities like the pitch-angle av-
eraged distribution function and different physically relevant velocity moments. The relation to previous
exact investigations is discussed.

I. INTRODUCTION analysis is the fact that the analytical solution is very
cumbersome and does not convey a clear picture of the
The collisional slowing down of a beam of high- physical processes involved in the slowing-down dynam-
energy charged particles in a background plasma is i@s. The purpose of the present work is to reconsider this
problem of fundamental importance with applicationsproblem, using an approach based on approximate ana-
ranging from fusion plasmas to astrophysical plasmasytical solutions, which give simple analytical expres-
For example, in fusion plasmas, examples of such highsions for the characteristic physical quantities and
energy beams are abundant: fusion-generated alpha p#uirthermore give a clear picture of the physics of the
ticles, neutral-beam-injected particles, ion cyclotronproblem.
resonance frequency—heated particles, and runaway elec-
trons. In two papers, Manservisi and Molinaticon-
sider the slowing-down dynamics of a group of fast IIl. THE FOKKER-PLANCK EQUATION
particles being released with a unidirectional velocity.
The analysis is based on the Fokker-Planck equation,

which describes the collisional dynamics of the parti-. Thbe _sIOW||ng-do(\j/vnt ?r{tnarrgcs'trc])f a b_zgm th p?r-
cles, including the effects of frictional slowing down, Icles being released at time= U with a unidirectiona

energy diffusion, and pitch-angle scattering. It is well€/0Cityv =vocan be described by the following Fokker-
known that certain timescales can be introduced to chafz 1k €guation for the normalized test particle distribu-
acterize these physical effects, but these concepts are ifin f = f(v, u,t), wherev = |v| and is the cosine of
always clearly defined onesee Refs. 3 and)4The U e pitch angle r(_alaltlve to the initial direction of the par-
analysis in Refs. 1 and 2 considers the slowing-dowﬁICIe beam velocity:

dynamics of the beam in more detail using an analytical o 9 [ a F (3 )}

solution of the Fokker-Planck equation. This solution is ool o2 —f

then used to evaluate slowing-down characteristics given v w\v

as certain physically relevant velocity moments of the y @ of

distribution function and to derive some of the afore- + = [(1 - u?) —} +S. (1)
mentioned characteristic timescales. A drawback of this v= op In

In this form of the Fokker-Planck equation, which was
*E-mail: fredrik.andersson@elmagn.chalmers.se used in Refs. 1 and 2, the distribution functioty, u, t),
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is defined in such a way that the volume element irthe eigenfunctions and the corresponding eigenvalues of
velocity space islvdu, rather thany?dvdu. The source the separated equations. Albeit exact, this solution is ex-
termSis given by ceedingly complicated and does not convey a clear pic-
ture of the physics involved in the dynamics. Nevertheless,
S=No(v = vo)d(p—1)8(1) , in Refs. 1pa?1/d 2, this solution fgrms the basis for an
whereN is the total number of test particles released. investigation of different general properties of the beam
In the considered situation, the particle beam is asdynamics, in particular, the characteristic timescales for
sumed to have small density and particle velocities thatlowing downts, energy diffusionty, and pitch-angle
are much larger than those of the background particleScattering,. _ _ _
which are taken to be zero. In this limit, the coefficients ~ In the present analysis we reconsider this problem
a, B, andy become independent of velocity and are givertsing a different and approximate approach, which gives

by Refs. 1 and 2: a clear physical picture of the slowing down of the beam.
A good way of examining and characterizing the
a=nMO[1-M1A-1/(2InA))] , slowing-down process is to calculate the evolution of
B =nM20/(2InA) , certain velocity space moments, e.g., the average energy
of the beam distribution. This approach is also pursued
and in Refs. 1 and 2. In fact, they define one of the time-
y =nM26[1-1/(2InA)]/2 , scales, the slowing down timg, as the time taken for

the energy of the beam distributi@= E(t) = (nv?/2)
where InA is the Coulomb logarithmn is the back- to reach the thermal enerdy, of the background parti-
ground particle density, and cles. Here, the averaged quantity or velocity space mo-
ment(G(v, u)) is defined by

_e*Z%InA
 4me?m?
fG(U,/.L)f(U,,LL,t)dUd/L
and
(Glo,p) =
M= _ M Jf(v,,u,t)dvd,u
m mp+m
wherem' is the reduced mass An analysis based on velocity space moments is pre-
sented in Secs. IV and VI, but already at this point a first
1 — 1 + 1 good estimate of the expected timescalgsy, andt,
m m, m’ can easily be obtained by writing the Fokker-Planck

Eq. (1) in the form
and the indice® andt refer to background and test par- a1

ticles, respectively. of 9 [a -B N B a_f]
v

The relative magnitude of the terms corresponding Frimie >
to friction, energy diffusion, and pitch-angle scattering, vL v
respectively, can be estimated by comparing the coeffi-

v

- d of
cientsa, B, andy as + 13 — [(1— w?) —] +S. (2
v° ou o
. . — . M . M
a:fry=1: 21— M)InA " 2(1—M) From this we can directly infer the following qualitative

estimates of the characteristic timescales for the differ-

where it is assumed that o> 1. Depending on the ent dynamical processes involved in the slowing down
physical situation, different physical effects may domi-of the beam, namely,

nate. Consider, for example, the case of heavy particles

slowing down on light particles, e.g., fusion-generated v
alpha particles slowing down on electrons. In this case, ts~ '
M < 1 and the friction term of the Fokker-Planck equa- (@ —=p)
tion describes the most important effect for the dynam- 3

ics. On the other hand, for light particles slowing down ty ~ 2 ,

on heavy particles, e.g., electrons slowing down on ions,
then clearly pitch-angle scattering is the dominant ef-
fect. The solution of the Fokker-Planck equation in the2"d
general case can be obtained using separation of vari-
ables(see Refs. 1 and)2However, the corresponding t o~ Yo (3)
expression becomes a double sum over terms involving Py
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PARTICLE SLOWING DOWN IN PLASMAS 101

Itis instructive to consider the Fokker-Planck Et).  fast particles instantaneously reach zero velocity, i.e.,
in the case when the friction force dominates the particldbecome thermalized. On the other hand, the higher-order
dynamics. We will find that although the slowing-down moments decay continuously with time, and the rate of
time definition given in Refs. 1 and 2 is consistent in thisdecay increases with increasing ordsee Fig. 1 In
limit, the situation becomes less clear when energy diffact, the initial decay of the moments proceeds accord-
fusion is taken into account. ing to

t
(V") ~ ug<1— = —> ,
Ill. THE BENCHMARKING CASE OF 3t

COLLISIONAL SLOWING DOWN ONLY i.e., the characteristic timescale for the initial variation is
. . . ts(n) = 3tg/n.
In cases where the friction force is the dominant  th this picture in mind, it is clear that there has
term in determining the slowing-down behavior, thepeen a more-or-less significant change of the moments

f =f(v, u,t) can be approximated as vanish at timet = t;. However, except for the higher-
f o0/ a order moments, the timescale for significant changes is
- = <—2 f) + NS (v —vg)d(m—1)8(1) . still of the order of the classical slowing down time
a  dviv The situation becomes more complicated when dif-
This equation is easily solved using the characteristi¢usion effects are taken into account. Intuitively, we ex-
coordinater = t + v%(3a), and the solution is pect diffusion to smooth out the discrete vanishing of the
moments at = ts and thatv")(t) — 0 only ast — oo.
flo,p,t) = No(v — v (1))6(pn — 1) , This intuitive picture is indeed confirmed by the solution
where derived in Sec. V for the second-order velocity moment

in the presence of diffusion effectsee Fig. 2. Clearly,

3at \1/3 there is now no longer a finite time at which any of the

v (1) = vo (1— ?> (40 moments vanish.
° In Refs. 1 and 2, the concept of slowing-down time

Clearly, this solution describes a particle velocity distri-in this situation is taken as the tinat which the second-
bution where the velocity dependence is in the form of @rder energy moment is equal to the thermal energy of
delta function slowing down continuously with a veloc- the background particles, which implies that
ity v¢(t). If the slowing-down times is defined by the W)L = v2
conditionvs (t) = 0, one obtains the classical result= s th
v§/(3a), in qualitative agreement with the dimensionalwherevy, is the thermal velocity of the background par-
estimate given in Eq(3) for g = 0. During slowing ticles. However, the Fokker-Planck coefficients used in
down, the beam does not spread, neither in energy nor e analysis correspond to those of a cold background,

pitch angle, i.e., the parallel and perpendicular tempera:e., vy, = 0. Furthermore, sincgy, is assumed to be close
tures of the beam remain zero.

The different velocity moments corresponding to the
weighting functiong™ become

t n/3
(v”>=08<1——> .
ts

In particular, we note that the third-order moment has an 08
especially simple form, decaying linearly to zero accord-

-

ing to =A°0-6'
t v
(v3>=v8<1——> : 0.4r
ts
At this stage, the energy definition of the slowing-  0.2f
down time seems noncontroversial insofar as all velocity
moments vanish at tinte= ts. However, at closer inspec- 0 . . :
tion we infer that there is a significant difference be- 0 02 04 .4 06 0.8 1
tween the time behavior of moments of different order. s
The lowest-order momerth = 0), corresponding to the Fig. 1. The time variation of different velocity moments

particle density, remains constant uriti ts, when all  in the case of slowing down only.
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distribution function like, for example, the mean energy
of the beam particles. For moments where the weighting
functionF (v, w) only depends on, i.e.,F(v, u) = F(v),

0.8} the relevant information can be obtained directly from
the pitch-angle integrated form of the Fokker-Planck equa-
we tion, which reads
206
RS
\

a—f_—i{ﬁﬂ i(’[—g f>}+N6( )8(t) ()
at |2 v\ v v o
with diffusion (k=20)

/ .
f_EJ f(o,u,t)du .

()} 0.5 1 1.5 2 1

S Thus, by solving Eq(5), which is much simpler than the
Fig. 2. Time variation of the second-order velocity mo- original Eq. (1), the desired moments can then be ob-
ment for the cases without and with diffusigas given by tained as
Eq. (10) for k = a/B = 20].

wheref is defined as

0.2t —

without diffusion

JG(U) f(v,t)dv

to zero, the actual value &fdepends crucially and arti- ff_(v, t) dv
ficially on the value ofvy,. The reintroduction of the
thermal velocity is physically neither consistent nor
meaningful.

With the caveat that a single slowing-down time is

However, this approach can be pursued further by
deriving a recursive set of ordinary differential equa-

t00 blunt ity to ch er h licat tions for the velocity moment&™). After multiplying
00 biunt a ?#an ! yl (t)' c aﬁ% er(ljz_et $t‘;0t_ a ?om[;)_ ICalegEq (5) by v and integrating over between zero and
process as the evolution of the distribution function, i e e obtain

particular in the presence of diffusion, it seems that a

natural and physically informative definition of the slow- d s |

ing down timet; is to define it by considering the time- 5 ("= —nla—(n=1BK">) +vis(t) . (6)

scale for the initial time evolution. From the initial

qualitative picture, we expect energy diffusion to affect = The moments have here been normalized with re-

the slowing-down time by the multiplicative factor spect to the totali.e., fast plus thermalizechumber of

(1- B/a)1, a prediction that will be confirmed by our particles. This coupled system of moment equations is

subsequent analysis. approximate in the sense that slowing down has been

On the other hand, it can be argued that a physicallpssumed to be rapid enough to make it possible to ne-

more natural way of writing the Fokker-Planck equationglect particle diffusion to velocities higher thag. Fur-

is the form given by Eq(2) because it more clearly thermore, Eq(6) is valid for all n exceptn = 0, where

separates the friction and diffusion operators. Consehe partial integration used in deriving it cannot be per-

quently, by redefiningr - « — 8 =& =nMé(1— M), formed due to the nonvanishiignd unknownthermal-

the characteristic slowing-down time would be definedization flux atv = 0. Since we considdras representing

by ts — fs = v3/@, which has the advantage of beingthe distribution of the fastnonthermalized particles,

(formally) independent of the diffusion paramegeiSince  the zero-order momerv°®) represents the ratio of fast

the choice of formulation of the Fokker-Planck equationparticles relative to the total number of released parti-

is a matter of taste, we have chogéar easy comparison cles, a quantity that cannot be determined from the iter-

with the results of Refs. 1 and B use the form given by ative system. This fact together with the well-known

Eqg. (). feature of the coupling to successively higher-order mo-
ments makes it difficult to solve the coupled system.
However, the system can easily be integrated to yield the

IV. MOMENT ANALYSIS initial time evolution of the moments in the for(n > 0)

n B
As emphasized in Sec. lll, the goal of the present ") ~vg {1_ 3t {1_ (n—1) ;]t} . (7)
analysis is to obtain, from a knowledge of the distribu- °
tion function, information about physically important Comparing with the diffusion-free expression for the
gquantities that are expressed as certain moments of tlmitial time evolution of the moments, we are enticed to
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PARTICLE SLOWING DOWN IN PLASMAS 103

introduce the following generalization of the energy B 3N [ vy [ v \G@20/4
slowing-down time, namely, fot) = — )/ — | —
4 Dt [%s)
1
ti=—-15, (v¥2 — p3?)2
B X ex |:_—O
1= P 4Dt

in complete agreement with the dimensional estimate™S €xPected, for small diffusion coefficienks> 1, the

Finally, we note that the third-order moment again ha&°'résponding distribution function is a slowly spread-
an especially simple form, and as long as the thermaliza"9 peaked distribution that slows down toward thermal-

tion flux can be neglectei.e.. (v°) ~ 1), it can be writ- ization. An ex_ample of the evolution is given in Fig. 3.
ten as g de.w?~1) The solution given by Eq(9) can also be used to

obtain analytical solutions for the time variation of the
©3) =v3[1— 3(a —2B)t] . different velocity moments, namely,

In the analysis of Ref. 2, the slowing-down time was (,ny(t)  T[3(1+ 7 + )] 1
obtained as the sum of two complicated functions, one — = [ ]
containing explicitly the thermal energy of the back- ") (0) I1+v]

ground particles and one that shows the same qualitative

dependence of as that found in the present analysis. X r%“*”")lFl[ +v; -

1
2 T

(10
V. SOLUTION OF THE REDUCED . .
FOKKER-PLANCK EQUATION where; F(a, b; x) denotes the hypergeometric function

n=2n—-k+ 2)/3, 7 = 4t/(94), and we have intro-

An important simplification obtained by going to duced the characteristic timescale for diffusive broaden-

: . = v3/(4B) [see the estimate given by
the reduced pitch-angle integrated Fokker-Planck(Bq. "9 ta as ta = v5/( : .
is the fact that this equation allows an explicit analyticalEd- (3)]- Expanding the hypergeometric function for large

solution to be found as follows: Introduce new indepen2rguments (i.e., smalir), we regain the short time evo-

dent and dependent variables according tev¥2 and  |ution of the moments given by Eq7) as we should.

9(z,t) = v Pf(v,t), wherep = (3 — k)/2 andk = a/8. Figure 2 gives an example of th_e variation of the second-

Equation(5) can then be transformed into an equationOrder velocity moment as p(edlqted by E4O).

for g(z, t), namely, To lowest order in the diffusion consta@t we can
obtain a simple approximate solution fofv,t) using

ag 9°g lag v? the Goodman metho@ee Ref. b For this purpose, we

at 922 " 7oz 22 +S(zt) , 8  makea physically reasonable ansatz for the evolution of

wherev = (k+1)/3,D = 98/4, andS(z,t) = N6(z%/3 —
22/®)8(t) (zo = v&'?). The Green function corresponding
to Eq.(8) is given by

I S S o P I
Gle.20 = o5 eXp{ 4Dt }'”[mt]H(t)’

wherel, is the modified Bessel function of orderand
H(t) is the Heaviside step function. The solution for the
pitch-angle averaged distribution function is then ob-
tained as

- 3Nvg [ v \@ /2
f(v,t) = (—)

Uo

X exp[—UBJrvg}ly[(wO)m] . (9 v/ 1

l+n+vw 1}

f[a.u.]

4Dt 2Dt

This solution is approximate in the same sense as the i 3. An example of the evolutiofiz > t, > t; > 0) of

coupled system of moment equations, i.e., it neglects th@e pitch-angle integrated distribution function as given by the
condition of vanishing flow at, toward higer velocities. exact solution, E¢(9). Note the qualitative agreement with the
Expanding the solution for small timeswe find approximate Goodman solution, Ed.1).
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the distribution in the form of a Gaussian with varyingand
amplitude, maximum velocity, and width, i.e., M
2

2y
(v — vm(1))? > - (BMz — Mo) — 8(v — vo)8(7 — v3/(3a)) .
AZ—(t) , (11) v v

These equations can readily be solved to give the time

where the parametesd(t), vy(t), andA(t) are functions  ey|ytion of the moments during slowing down as follows:
to be determined from suitable moments of the original

f(v,t) = A(t)exp{—

equation. As long as the number of thermalized particles Mo(t) = constant=1 ,
remains small and the diffusive spreading is slow com- (1) \2/a
pared to the slowing down, we can approximate = M, (t) = <Uf )
constant andm(t) =~ v;(t). Using any of the higher- ! Vo ’

order moments, we obtain to lowest ordegithatA (t) ~

vo\[t/ty, where the characteristic timescale for the diffu-and

sive broadening of the beaty appears naturally and 1 v; (1) \6v/a

again in good qualitative agreement with the dimen- M,(t) = —{1+ 2( > ] , (14)
sional estimate of Sec. Il. 3 Vo

whereuvs (1) is defined by Eq(14). Clearly, the total en-
VI. PITCH-ANGLE SCATTERING DYNAMICS ergy E = m(v?)/2 of the particles still decays toward
DURING SLOWING DOWN zero according to the result obtained in Sec. Ill, i.e.,
E(t) = E(0)(1 — t/ts)%3. However, due to the pitch-
Finally, we investigate the behavior during slowing angle scattering, the total energy is no longer confined to
down of quantities like the parallel and perpendiculatthe parallel direction, and, for example, the mean paral-
beam temperatures, which depend on the pitch-angle sca! velocity (v,) decays according to
tering dynamics. Since we consider only situations where t \1/3+2y/3a
(vy) Uo( )

In A > 1, energy diffusion can be neglected in this analy- 1——
sis. The relevant Fokker-Planck equation is then ts
f i fa Y i(l— 2) of in complete agreement with the corresponding results
ot v \p2 3 Ky obtained in Ref. 2 by integrating the expansion of the
4 NS — v0) 8 — 1)8(1) . (12) distribution function in terms of Legendre polynomials.

The results expressed by Hd4) also make it pos-
Eliminating timet in favor of the characteristic coordi- sible to describe the spreading of the beam in terms of its
nater =t + v%(3a) and introducing- = f/v? as a more parallel and perpendicular temperatures and the concom-
convenient function, we obtain the simpler equation itant anisotropic properties of the beam. For the parallel
T, = m{(v, — {(v,))?)/2 and perpendiculaF, = m{(v, —

@ oF + Yo {(1_ w?) E] (v, ))?) temperatures, we obtain
Ju v ou o -
T 1 U 6y/a v Ay /a

+ N&(v —v0)8(pn —1)8(1 —v¥([Ba)) =0 . (13 E” =31t 2<—> - 3<—> ]

Important and explicit information about the pitch- - 0o 0o
angle scattering dynamics during slowing down can band
obtained analogously to the analysis in the previous sec- - 6y/a
tions by analyzing the evolution of certain physically L _ Z 1— bt
important pitch-angle moments. To analyze the evolu- E 3 Vo '
tion of the parallel and perpendicular temperatures, it is ) )
convenient to study the moments These formulas clearly show the evolution of the paral-

1 lel and perpendicular temperatures as well as the evolu-
M, (v,7) = a f wF du tion of the distribution function toward full isotropy as
e 1 ' the particles slow down toward thermalization. At time

t = 0, whenv = vg, both T, and T, vanish, whereas as
t — tsandv — 0, the ratios of the parallel and perpen-
dicular temperatures to the full temperature approach the

After multiplying Eq.(13) with suitable weighting func-
tions, the following ordinary equations are obtained:

dMy 5 isotropic values3 and 3, respectively.

& —6(v = o) (7 — v5/(3a)) Although, as far as we know, no simple analytical
solution of Eq.(12) describing the combined effects of

d_Ml — 2y My — 6 (v — 00)8 (7 — v3/(3)) | slowing down and pitch-angle scattering is available, a

dv v simple approximate solution can again be found using
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the Goodman approach. For this purpose, we model thgarticles slowing down in a cold plasma under the com-
pitch-angle dependence with a function of the form  bined influence of friction, energy diffusion, and pitch-
angle scattering caused by small-angle collisions with
] background particles. This problem was previously an-
A(v) alyzed in Refs. 1 and 2 using an exact, but cumbersome,
solution of the concomitant Fokker-Planck equation. The
present work emphasizes the physical understanding of
the collisional processes and provides qualitative and
e approximate solutions for different aspects of the prob-
em. In particular, the characteristic timescales for the
rfifferent physical processes, which was one of the main
points of the analysis in Ref. 2, have been clarified and
expressed in simple and pregnant physical terms.

Flo,u) = A(v)exp[

Using the two momentk(v) andly(v) of F(v, u),
which are already known, we can obtain two relations
which determine the variation éf(v) andA(v). For sim-
plicity, we assume that < 1, i.e., we consider only th
initial evolution before the beam has spread significantl
in pitch angle. This assumption simplifies the evaluatio
of the moment integrals, and we obtain

A(v)A(v) = constant
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