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Abstract –A detailed discussion is given of the effects of energy diffusion and pitch-angle scattering on
the slowing-down dynamics of a beam of monoenergetic particles being released with unidirectional
velocity. Approximate solutions are given for characteristic averaged quantities like the pitch-angle av-
eraged distribution function and different physically relevant velocity moments. The relation to previous
exact investigations is discussed.

I. INTRODUCTION

The collisional slowing down of a beam of high-
energy charged particles in a background plasma is a
problem of fundamental importance with applications
ranging from fusion plasmas to astrophysical plasmas.
For example, in fusion plasmas, examples of such high-
energy beams are abundant: fusion-generated alpha par-
ticles, neutral-beam-injected particles, ion cyclotron
resonance frequency–heated particles, and runaway elec-
trons. In two papers, Manservisi and Molinari1,2 con-
sider the slowing-down dynamics of a group of fast
particles being released with a unidirectional velocity.
The analysis is based on the Fokker-Planck equation,
which describes the collisional dynamics of the parti-
cles, including the effects of frictional slowing down,
energy diffusion, and pitch-angle scattering. It is well
known that certain timescales can be introduced to char-
acterize these physical effects, but these concepts are not
always clearly defined ones~see Refs. 3 and 4!. The
analysis in Refs. 1 and 2 considers the slowing-down
dynamics of the beam in more detail using an analytical
solution of the Fokker-Planck equation. This solution is
then used to evaluate slowing-down characteristics given
as certain physically relevant velocity moments of the
distribution function and to derive some of the afore-
mentioned characteristic timescales. A drawback of this

analysis is the fact that the analytical solution is very
cumbersome and does not convey a clear picture of the
physical processes involved in the slowing-down dynam-
ics. The purpose of the present work is to reconsider this
problem, using an approach based on approximate ana-
lytical solutions, which give simple analytical expres-
sions for the characteristic physical quantities and
furthermore give a clear picture of the physics of the
problem.

II. THE FOKKER-PLANCK EQUATION

The slowing-down dynamics of a beam of par-
ticles being released at timet 5 0 with a unidirectional
velocityv5 v0 can be described by the following Fokker-
Planck equation for the normalized test particle distribu-
tion f 5 f ~v, m, t !, wherev5 6v6 andm is the cosine of
the pitch angle relative to the initial direction of the par-
ticle beam velocity:

]f

]t
5

]

]v F a

v2 f 1
]

]v Sb

v
fDG

1
g

v3

]

]m
F~12 m2!

]f

]m
G1 S . ~1!

In this form of the Fokker-Planck equation, which was
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is defined in such a way that the volume element in
velocity space isdvdm, rather thanv2dvdm. The source
termS is given by

S5 Nd~v2 v0!d~m 2 1!d~t ! ,

whereN is the total number of test particles released.
In the considered situation, the particle beam is as-

sumed to have small density and particle velocities that
are much larger than those of the background particles,
which are taken to be zero. In this limit, the coefficients
a, b, andg become independent of velocity and are given
by Refs. 1 and 2:

a 5 nMu@12 M~12 10~2 ln L!!# ,

b 5 nM2u0~2 ln L! ,

and

g 5 nM2u@12 10~2 ln L!#02 ,

where lnL is the Coulomb logarithm,n is the back-
ground particle density, and

u 5
e4Z2 ln L

4pe2m'2
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and the indicesb andt refer to background and test par-
ticles, respectively.

The relative magnitude of the terms corresponding
to friction, energy diffusion, and pitch-angle scattering,
respectively, can be estimated by comparing the coeffi-
cientsa, b, andg as

a : b : g 5 1 :
M

2~12 M ! ln L
:

M

2~12 M !
,

where it is assumed that lnL .. 1. Depending on the
physical situation, different physical effects may domi-
nate. Consider, for example, the case of heavy particles
slowing down on light particles, e.g., fusion-generated
alpha particles slowing down on electrons. In this case,
M ,, 1 and the friction term of the Fokker-Planck equa-
tion describes the most important effect for the dynam-
ics. On the other hand, for light particles slowing down
on heavy particles, e.g., electrons slowing down on ions,
then clearly pitch-angle scattering is the dominant ef-
fect. The solution of the Fokker-Planck equation in the
general case can be obtained using separation of vari-
ables~see Refs. 1 and 2!. However, the corresponding
expression becomes a double sum over terms involving

the eigenfunctions and the corresponding eigenvalues of
the separated equations. Albeit exact, this solution is ex-
ceedingly complicated and does not convey a clear pic-
ture of the physics involved in the dynamics. Nevertheless,
in Refs. 1 and 2, this solution forms the basis for an
investigation of different general properties of the beam
dynamics, in particular, the characteristic timescales for
slowing down ts, energy diffusiontd, and pitch-angle
scatteringtp.

In the present analysis we reconsider this problem
using a different and approximate approach, which gives
a clear physical picture of the slowing down of the beam.

A good way of examining and characterizing the
slowing-down process is to calculate the evolution of
certain velocity space moments, e.g., the average energy
of the beam distribution. This approach is also pursued
in Refs. 1 and 2. In fact, they define one of the time-
scales, the slowing down timets, as the time taken for
the energy of the beam distributionE 5 E~t ! 5 ^mv202&
to reach the thermal energyEth of the background parti-
cles. Here, the averaged quantity or velocity space mo-
ment^G~v, m!& is defined by

^G~v, m!& 5

EG~v, m! f ~v, m, t ! dv dm

E f ~v, m, t ! dv dm

.

An analysis based on velocity space moments is pre-
sented in Secs. IV and VI, but already at this point a first
good estimate of the expected timescalests, td, and tp
can easily be obtained by writing the Fokker-Planck
Eq. ~1! in the form
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From this we can directly infer the following qualitative
estimates of the characteristic timescales for the differ-
ent dynamical processes involved in the slowing down
of the beam, namely,

ts '
v03

~a 2 b!
,

td '
v03

b
,

and

tp '
v03

g
. ~3!
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It is instructive to consider the Fokker-Planck Eq.~1!
in the case when the friction force dominates the particle
dynamics. We will find that although the slowing-down
time definition given in Refs. 1 and 2 is consistent in this
limit, the situation becomes less clear when energy dif-
fusion is taken into account.

III. THE BENCHMARKING CASE OF
COLLISIONAL SLOWING DOWN ONLY

In cases where the friction force is the dominant
term in determining the slowing-down behavior, the
Fokker-Planck Eq.~1! for the full particle distribution
f 5 f ~v, m, t ! can be approximated as

]f

]t
5

]

]v S a

v2 fD1 Nd~v2 v0!d~m 2 1!d~t ! .

This equation is easily solved using the characteristic
coordinatet 5 t 1 v30~3a!, and the solution is

f ~v, m, t ! 5 Nd~v2 vf ~t !!d~m 2 1! ,

where

vf ~t ! 5 v0S12
3at

v03
D103

. ~4!

Clearly, this solution describes a particle velocity distri-
bution where the velocity dependence is in the form of a
delta function slowing down continuously with a veloc-
ity vf ~t !. If the slowing-down timets is defined by the
conditionvf ~t ! 5 0, one obtains the classical result:ts [
v030~3a!, in qualitative agreement with the dimensional
estimate given in Eq.~3! for b 5 0. During slowing
down, the beam does not spread, neither in energy nor in
pitch angle, i.e., the parallel and perpendicular tempera-
tures of the beam remain zero.

The different velocity moments corresponding to the
weighting functionsvn become

^vn& 5 v0nS12
t

ts
Dn03

.

In particular, we note that the third-order moment has an
especially simple form, decaying linearly to zero accord-
ing to

^v3& 5 v03S12
t

ts
D .

At this stage, the energy definition of the slowing-
down time seems noncontroversial insofar as all velocity
moments vanish at timet 5 ts. However, at closer inspec-
tion we infer that there is a significant difference be-
tween the time behavior of moments of different order.
The lowest-order moment~n 5 0!, corresponding to the
particle density, remains constant untilt 5 ts, when all

fast particles instantaneously reach zero velocity, i.e.,
become thermalized. On the other hand, the higher-order
moments decay continuously with time, and the rate of
decay increases with increasing order~see Fig. 1!. In
fact, the initial decay of the moments proceeds accord-
ing to

^vn& ' v0nS12
n

3

t

ts
D ,

i.e., the characteristic timescale for the initial variation is
ts~n! 5 3ts0n.

With this picture in mind, it is clear that there has
been a more-or-less significant change of the moments
~depending on the order! even before they eventually
vanish at timet 5 ts. However, except for the higher-
order moments, the timescale for significant changes is
still of the order of the classical slowing down timets.

The situation becomes more complicated when dif-
fusion effects are taken into account. Intuitively, we ex-
pect diffusion to smooth out the discrete vanishing of the
moments att 5 ts and that̂ vn&~t ! r 0 only ast r `.
This intuitive picture is indeed confirmed by the solution
derived in Sec. V for the second-order velocity moment
in the presence of diffusion effects~see Fig. 2!. Clearly,
there is now no longer a finite time at which any of the
moments vanish.

In Refs. 1 and 2, the concept of slowing-down time
in this situation is taken as the time[ts at which the second-
order energy moment is equal to the thermal energy of
the background particles, which implies that

^v2&~ [ts! 5 vth2 ,

wherevth is the thermal velocity of the background par-
ticles. However, the Fokker-Planck coefficients used in
the analysis correspond to those of a cold background,
i.e.,vth5 0. Furthermore, sincevth is assumed to be close

Fig. 1. The time variation of different velocity moments
in the case of slowing down only.
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to zero, the actual value of[ts depends crucially and arti-
ficially on the value ofvth. The reintroduction of the
thermal velocity is physically neither consistent nor
meaningful.

With the caveat that a single slowing-down time is
too blunt a quantity to characterize such a complicated
process as the evolution of the distribution function, in
particular in the presence of diffusion, it seems that a
natural and physically informative definition of the slow-
ing down timets* is to define it by considering the time-
scale for the initial time evolution. From the initial
qualitative picture, we expect energy diffusion to affect
the slowing-down time by the multiplicative factor
~12 b0a!21, a prediction that will be confirmed by our
subsequent analysis.

On the other hand, it can be argued that a physically
more natural way of writing the Fokker-Planck equation
is the form given by Eq.~2! because it more clearly
separates the friction and diffusion operators. Conse-
quently, by redefininga r a 2 b 5 Ja 5 nMu~1 2 M !,
the characteristic slowing-down time would be defined
by ts r Its 5 v030 Ja, which has the advantage of being
~formally! independent of the diffusion parameterb. Since
the choice of formulation of the Fokker-Planck equation
is a matter of taste, we have chosen~for easy comparison
with the results of Refs. 1 and 2! to use the form given by
Eq. ~1!.

IV. MOMENT ANALYSIS

As emphasized in Sec. III, the goal of the present
analysis is to obtain, from a knowledge of the distribu-
tion function, information about physically important
quantities that are expressed as certain moments of the

distribution function like, for example, the mean energy
of the beam particles. For moments where the weighting
functionF~v, m! only depends onv, i.e.,F~v, m! 5 F~v!,
the relevant information can be obtained directly from
the pitch-angle integrated form of the Fokker-Planck equa-
tion, which reads

] Nf
]t

5
]

]v F a

v2 Nf 1
]

]v Sb

v
NfDG1 Nd~v2 v0!d~t ! ~5!

where Nf is defined as

Nf [ E
21

11

f ~v, m, t ! dm .

Thus, by solving Eq.~5!, which is much simpler than the
original Eq. ~1!, the desired moments can then be ob-
tained as

^G~v!& 5

EG~v! Nf ~v, t ! dv

E Nf ~v, t ! dv
.

However, this approach can be pursued further by
deriving a recursive set of ordinary differential equa-
tions for the velocity momentŝvn&. After multiplying
Eq. ~5! by vn and integrating overv between zero and
infinity, we obtain

d

dt
^vn& ' 2n@a 2 ~n 2 1!b#^vn23& 1 v0nd~t ! . ~6!

The moments have here been normalized with re-
spect to the total~i.e., fast plus thermalized! number of
particles. This coupled system of moment equations is
approximate in the sense that slowing down has been
assumed to be rapid enough to make it possible to ne-
glect particle diffusion to velocities higher thanv0. Fur-
thermore, Eq.~6! is valid for all n exceptn 5 0, where
the partial integration used in deriving it cannot be per-
formed due to the nonvanishing~and unknown! thermal-
ization flux atv5 0. Since we considerNf as representing
the distribution of the fast~nonthermalized! particles,
the zero-order moment^v0& represents the ratio of fast
particles relative to the total number of released parti-
cles, a quantity that cannot be determined from the iter-
ative system. This fact together with the well-known
feature of the coupling to successively higher-order mo-
ments makes it difficult to solve the coupled system.
However, the system can easily be integrated to yield the
initial time evolution of the moments in the form~n . 0!

^vn& ' v0nH12
n

3ts
F12 ~n 2 1!

b

aG tJ . ~7!

Comparing with the diffusion-free expression for the
initial time evolution of the moments, we are enticed to

Fig. 2. Time variation of the second-order velocity mo-
ment for the cases without and with diffusion@as given by
Eq. ~10! for k 5 a0b 5 20# .
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introduce the following generalization of the energy
slowing-down time, namely,

ts* [
1

12
b

a

ts ,

in complete agreement with the dimensional estimate.
Finally, we note that the third-order moment again has
an especially simple form, and as long as the thermaliza-
tion flux can be neglected~i.e., ^v0& ' 1!, it can be writ-
ten as

^v3& 5 v03@12 3~a 2 2b!t # .

In the analysis of Ref. 2, the slowing-down time was
obtained as the sum of two complicated functions, one
containing explicitly the thermal energy of the back-
ground particles and one that shows the same qualitative
dependence onb as that found in the present analysis.

V. SOLUTION OF THE REDUCED
FOKKER-PLANCK EQUATION

An important simplification obtained by going to
the reduced pitch-angle integrated Fokker-Planck Eq.~5!
is the fact that this equation allows an explicit analytical
solution to be found as follows: Introduce new indepen-
dent and dependent variables according toz5 v302 and
g~z, t ! 5 v2pf ~v, t !, wherep 5 ~3 2 k!02 andk 5 a0b.
Equation~5! can then be transformed into an equation
for g~z, t !, namely,

]g

]t
5 DS ]2g

]z2 1
1

z

]g

]z
2

n2

z2 gD1 S~z, t ! , ~8!

wheren 5 ~k11!03, D 5 9b04, andS~z, t ! 5 Nd~z203 2
z0

203!d~t ! ~z0 5 v0302!. The Green function corresponding
to Eq.~8! is given by

G~j, z, t ! 5
1

2Dt
expF2z2 1 j2

4Dt
G InF zj

2Dt
GH~t ! ,

whereIn is the modified Bessel function of ordern and
H~t ! is the Heaviside step function. The solution for the
pitch-angle averaged distribution function is then ob-
tained as

Nf ~v, t ! 5
3Nv02

4Dt S vv0D
~32k!02

3 expF2v3 1 v03

4Dt
G InF ~vv0!302

2Dt
G . ~9!

This solution is approximate in the same sense as the
coupled system of moment equations, i.e., it neglects the
condition of vanishing flow atv0 toward higer velocities.
Expanding the solution for small timest, we find

Nf ~v, t ! .
3N

4 ! v0
pDt S vv0D

~322k!04

3 expF2 ~v302 2 v0302!2

4Dt
G .

As expected, for small diffusion coefficientsk .. 1, the
corresponding distribution function is a slowly spread-
ing peaked distribution that slows down toward thermal-
ization. An example of the evolution is given in Fig. 3.

The solution given by Eq.~9! can also be used to
obtain analytical solutions for the time variation of the
different velocity moments, namely,

^vn&~t !

^vn&~0!
5

G@ 1
2
_~11 h 1 n!#

G@11 n#
expF2 1

t
G

3 t2 1
2 ~11n2h!

1F1F 11 h 1 n

2
, 11 n;

1

t
G ,

~10!

where1F1~a,b; x! denotes the hypergeometric function
h 5 ~2n 2 k 1 2!03, t 5 4t0~9td !, and we have intro-
duced the characteristic timescale for diffusive broaden-
ing td as td [ v030~4b! @see the estimate given by
Eq.~3!#. Expanding the hypergeometric function for large
argumentsx ~i.e., smallt!, we regain the short time evo-
lution of the moments given by Eq.~7! as we should.
Figure 2 gives an example of the variation of the second-
order velocity moment as predicted by Eq.~10!.

To lowest order in the diffusion constantb, we can
obtain a simple approximate solution forNf ~v, t ! using
the Goodman method~see Ref. 5!. For this purpose, we
make a physically reasonable ansatz for the evolution of

Fig. 3. An example of the evolution~t3 . t2 . t1 . 0! of
the pitch-angle integrated distribution function as given by the
exact solution, Eq.~9!. Note the qualitative agreement with the
approximate Goodman solution, Eq.~11!.
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the distribution in the form of a Gaussian with varying
amplitude, maximum velocity, and width, i.e.,

Nf ~v, t ! 5 A~t !expF2 ~v2 vm~t !!2

D2~t !
G , ~11!

where the parametersA~t !, vm~t !, andD~t ! are functions
to be determined from suitable moments of the original
equation. As long as the number of thermalized particles
remains small and the diffusive spreading is slow com-
pared to the slowing down, we can approximateAD 5
constant andvm~t ! ' vf ~t !. Using any of the higher-
order moments, we obtain to lowest order inb thatD~t ! '
v0M t0td, where the characteristic timescale for the diffu-
sive broadening of the beamtd appears naturally and
again in good qualitative agreement with the dimen-
sional estimate of Sec. II.

VI. PITCH-ANGLE SCATTERING DYNAMICS
DURING SLOWING DOWN

Finally, we investigate the behavior during slowing
down of quantities like the parallel and perpendicular
beam temperatures, which depend on the pitch-angle scat-
tering dynamics. Since we consider only situations where
ln L .. 1, energy diffusion can be neglected in this analy-
sis. The relevant Fokker-Planck equation is then

]f

]t
5

]

]v S a

v2 fD1
g

v3

]

]m
~12 m2!

]f

]m

1 Nd~v2 v0!d~m 2 1!d~t ! . ~12!

Eliminating timet in favor of the characteristic coordi-
natet 5 t 1 v30~3a! and introducingF 5 f0v2 as a more
convenient function, we obtain the simpler equation

a
]F

]v
1

g

v

]

]m
F~12 m2!

]F

]m
G

1 Nd~v2 v0!d~m 2 1!d~t 2 v30~3a!! 5 0 . ~13!

Important and explicit information about the pitch-
angle scattering dynamics during slowing down can be
obtained analogously to the analysis in the previous sec-
tions by analyzing the evolution of certain physically
important pitch-angle moments. To analyze the evolu-
tion of the parallel and perpendicular temperatures, it is
convenient to study the moments

Mn~v,t! [
a

N
E

21

1

mnF dm .

After multiplying Eq.~13! with suitable weighting func-
tions, the following ordinary equations are obtained:

dM0

dv
5 2d~v2 v0!d~t 2 v030~3a!! ,

dM1

dv
5

2g

v
M1 2 d~v2 v0!d~t 2 v030~3a!! ,

and

dM2

dv
5

2g

v
~3M2 2 M0! 2 d~v2 v0!d~t 2 v030~3a!! .

These equations can readily be solved to give the time
evolution of the moments during slowing down as follows:

M0~t ! 5 constant5 1 ,

M1~t ! 5 S vf ~t !v0 D2g0a

,

and

M2~t ! 5
1

3 F11 2S vf ~t !v0 D6g0aG , ~14!

wherevf ~t ! is defined by Eq.~14!. Clearly, the total en-
ergy E 5 m^v2&02 of the particles still decays toward
zero according to the result obtained in Sec. III, i.e.,
E~t ! 5 E~0!~1 2 t0ts!203. However, due to the pitch-
angle scattering, the total energy is no longer confined to
the parallel direction, and, for example, the mean paral-
lel velocity ^v5 & decays according to

^v5 & 5 v0S12
t

ts
D10312g03a

in complete agreement with the corresponding results
obtained in Ref. 2 by integrating the expansion of the
distribution function in terms of Legendre polynomials.

The results expressed by Eq.~14! also make it pos-
sible to describe the spreading of the beam in terms of its
parallel and perpendicular temperatures and the concom-
itant anisotropic properties of the beam. For the parallel
T5[ m^~v52 ^v5 &!2&02 and perpendicularT4[ m^~v42
^v4 &!2& temperatures, we obtain

T5
E

5
1

3 F11 2S vfv0D
6g0a

2 3S vfv0D
4g0aG

and

T4
E

5
2

3 F12S vfv0D
6g0aG .

These formulas clearly show the evolution of the paral-
lel and perpendicular temperatures as well as the evolu-
tion of the distribution function toward full isotropy as
the particles slow down toward thermalization. At time
t 5 0, whenv 5 v0, both T5 andT4 vanish, whereas as
t r ts andv r 0, the ratios of the parallel and perpen-
dicular temperatures to the full temperature approach the
isotropic values,13

_ and 2
3
_, respectively.

Although, as far as we know, no simple analytical
solution of Eq.~12! describing the combined effects of
slowing down and pitch-angle scattering is available, a
simple approximate solution can again be found using
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the Goodman approach. For this purpose, we model the
pitch-angle dependence with a function of the form

F~v, m! 5 A~v!expFm 2 1

D~v! G .

Using the two momentsI0~v! and I1~v! of F~v, m!,
which are already known, we can obtain two relations,
which determine the variation ofA~v! andD~v!. For sim-
plicity, we assume thatD ,, 1, i.e., we consider only the
initial evolution before the beam has spread significantly
in pitch angle. This assumption simplifies the evaluation
of the moment integrals, and we obtain

A~v!D~v! 5 constant ,

D~v! ' F12 S12
t

ts
D2g0~3a!G .

To lowest order int, we obtain for the initial spreading of
the beam in pitch angle,

D~t ! '
t

tp
,

where the diffusion timetp is defined bytp [ v030~2g!,
again in good agreement with the qualitative estimate
given in Sec. I.

VII. CONCLUDING REMARKS

This analysis has reinvestigated the problem of de-
termining the dynamical properties of a beam of fast

particles slowing down in a cold plasma under the com-
bined influence of friction, energy diffusion, and pitch-
angle scattering caused by small-angle collisions with
background particles. This problem was previously an-
alyzed in Refs. 1 and 2 using an exact, but cumbersome,
solution of the concomitant Fokker-Planck equation. The
present work emphasizes the physical understanding of
the collisional processes and provides qualitative and
approximate solutions for different aspects of the prob-
lem. In particular, the characteristic timescales for the
different physical processes, which was one of the main
points of the analysis in Ref. 2, have been clarified and
expressed in simple and pregnant physical terms.
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