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The collisionality dependence of the quasilinear particle flux due to the ion temperature gradient
�ITG� and trapped electron mode �TEM� instabilities is studied by including electron collisions
modeled by a pitch-angle scattering collision operator in the gyrokinetic equation. The inward
transport due to ITG modes is caused mainly by magnetic curvature and thermodiffusion and can be
reversed as electron collisions are introduced, if the plasma is far from marginal stability. However,
if the plasma is close to marginal stability, collisions may even enhance the inward transport. The
sign and the magnitude of the transport are sensitive to the form of the collision operator, to the
magnetic drift normalized to the real frequency of the mode, and to the density and temperature
scale lengths. These analytical results are in agreement with previously published gyrokinetic
simulations. Unlike the ITG-driven flux, the TEM-driven flux is expected to be outwards for
conditions far from marginal stability and inwards otherwise. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2946433�

I. INTRODUCTION

Density peaking in tokamak plasmas has been shown to
decrease with increasing collisionality in ASDEX Upgrade1

and JET �Joint European Torus�2 H-modes.3–5 These experi-
mental results suggest that the particle transport, which is
usually dominated by ITG- and TEM-driven turbulence, de-
pends on the collisionality, although it has been suggested
that the source from ionization may also play an important
role.6,7

In the collisionless limit, numerical simulations of ITG-
mode driven turbulence give an inward particle flux in fluid,
gyrofluid, and gyrokinetic descriptions. The inward flow is
caused mainly by magnetic curvature and thermodiffusion.
However, nonlinear gyrokinetic calculations show that even
a small value of the collisionality affects strongly the mag-
nitude and sign of the anomalous particle flows.8 The inward
particle flow obtained in the collisionless limit is rapidly con-
verted to outward flow as electron-ion collisions are in-
cluded. Linear gyrokinetic calculations with GS2 and a qua-
silinear model for the particle fluxes9 have confirmed the
strong collisionality dependence of the quasilinear particle
flux for small collisionalities and show a good agreement
with nonlinear gyrokinetic results from Ref. 8. Both gyroki-
netic models find that the total particle flux becomes directed
outward for much smaller values of collisionality than the
lowest collisionality presently achieved in tokamaks. This
means that according to these simulations, for present toka-
mak experiments the particle flow should be outward.

The present paper addresses the collisionality depen-
dence of the quasilinear flux due to ITG and TEM modes.
The aim is to derive analytical expressions for the quasilinear
flux to show explicitly the dependence on collisionality, den-
sity, and temperature gradients, so that the sign and magni-
tude of the flux can easily be estimated. We focus on the

collisionality dependence of the direction and the magnitude
of the quasilinear flux, and give approximate analytical ex-
pressions for weakly collisional plasmas with large aspect
ratio and circular cross section.

The collisionality dependence has previously been stud-
ied in Refs. 10 and 11 by approximating the collision opera-
tor with an energy-dependent Krook operator. The main dif-
ference between this paper and the references above is the
form of the collision operator. Here we use a pitch-angle
scattering collision operator, but we include the results for
the Krook operator for comparison and completeness. As we
will show here, the form of the collision operator determines
the scaling with collisionality and therefore affects the colli-
sionality threshold at which the particle flow reverses. The
eigenfrequency and growth rate of the modes are only
weakly dependent on the collisionality,8 and in this paper we
do not analyze the dispersion relation and the stability
boundaries, but instead focus on the quasilinear particle flux
driven by the mode. The collisionality dependence of the
quasilinear flux due to the TEM instability has been studied
in Ref. 12 using a pitch-angle scattering collision operator,
and here we generalize the expression presented there by
including the magnetic drift.

The structure of the paper is the following: In Sec. II the
general gyrokinetic formalism is presented. In Sec. III ap-
proximate solutions of the gyrokinetic equation are given in
the limit of high mode numbers and the perturbed electron
density is calculated. In Sec. IV the quasilinear flux is calcu-
lated and the effect of collisions is discussed. The possibility
of flux reversal, comparison with previous work and the va-
lidity of our approximations are discussed in Sec. V. Finally,
the results are summarized in Sec. VI.
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II. GYROKINETIC EQUATION

We consider an axisymmetric, large aspect ratio torus
with circular magnetic surfaces. The nonadiabatic part of the
perturbed distribution function is given by the linearized gy-
rokinetic equation10

v�

qR

�ga

��
− i�� − �Da�ga − Ca�ga�

= − i
eafa0

Ta
�� − �

*a
T ��J0�za� , �1�

where � is the extended poloidal angle, � is the perturbed
electrostatic potential, fa0=na�ma /2�Ta�3/2exp�−w /Ta� is the
equilibrium Maxwellian distribution function, w=mav2 /2,
na, Ta, and ea are the density, temperature, and charge of
species a, respectively, �*a=−k�Ta /eaBLna is the diamag-

netic frequency, �
*a
T =�*a�1+ �w /Ta−3 /2��a�, �a=Lna /LTa,

Lna=−���ln na� /�r�−1, LTa=−���ln Ta� /�r�−1, are the density
and temperature scale lengths, respectively, k� is the poloidal
wave-number, �Da=−k��v�

2 /2+v�
2��cos �+s� sin �� /�caR is

the magnetic drift frequency, �ca=eaB /ma is the cyclotron
frequency, q is the safety factor, s= �r /q��dq /dr� is the mag-
netic shear, r is the minor radius, R is the major radius, J0 is
the Bessel function of order zero, and za=k�v� /�ca.

III. PERTURBED ELECTRON DENSITY RESPONSE

Turning to the electron kinetic equation, we retain colli-
sions and use a pitch-angle scattering operator

Ce = �e�v�
2�

B

�

��
��

�

��
� �e�v�L , �2�

where �e�v�=�T /x3, x=v /vTe, �=v� /v, and �=	 /w with
	=mav�

2 /2B. If the electron distribution is expanded as
ge=ge0+ge1+¯ in the smallness of the normalized collision-
ality �*e=�e /
�b�1 and � /�b�1, where �b is the bounce

frequency, then in lowest order we have �ge0 /��=0. In next
order, we arrive at

i�� − ��De��ge0 + �Ce�ge0�� =
ie���

Te
��

*e
T − ��fe0, �3�

where �¯� is the orbit average. The circulating electrons are
assumed to be adiabatic, while in the trapped region ge0 is
given by

�� − ��De��ge0 −
2i�e

	2
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�

��
�
� �d�� �ge0

��

= −
e���
Te

�� − �
*e
T �fe0, �4�

where the orbit-averaged precession frequency for trapped
electrons is

��De� = �D0
E�
�
K�
�

−
1

2
+

2rq�

q

E�
�

K�
�
+ 
 − 1�� , �5�

where �D0=−k�v2 /�ceR and E, K are the complete elliptic
functions with the argument 
= �1−�B0�1−
�� /2
�B0,
where B0 is the flux-surface averaged magnetic field and


=r /R. Performing the orbit average on the scattering
operator, Eq. �4� becomes

�� − ��De��ge0 −
i�e


�̂B

�

�

Ĵ�
�

�ge0

�

= −

e���
Te

�� − �
*e
T �fe0,

�6�

where Ĵ=E�
�+ �
−1�K�
� and �̂B=K�
�. We introduce
a parameter �̂��e /�0
, where �0=� /y, y=�+ i�̂,
�=sign�Re���� denotes the sign of the real part of the eigen-
frequency, and �̂=� /�0 is the normalized growth rate. The
equation for ge0 is

�̂�ge0� + �ln Ĵ��ge0� � + i
K

Ĵ

y −

��De�
�0

�ge0 = i
SK

�0Ĵ
, �7�

where S=−�e��� /Te���−�
*e
T �fe0. The perturbed electrostatic

potential is approximated by ����=�0�1+cos �� /2�H��
+��−H��−���, where H is the Heaviside function and then
���=�0E�
� /K�
�. Assuming weakly collisional plasmas
such that �̂�1, the WKB solution to the homogeneous

equation �̂�ge0� + �ln Ĵ��ge0� �=�2ge0, where �2=−i�y
− ��De� /�0�K / Ĵ, is

ghom�
� =
1

	�Ĵ

c1 sinh
�̂−1/2�


��z�dz�
+ c2 cosh
�̂−1/2�


��z�dz�� . �8�

The solution of the inhomogeneous equation can then be
obtained with the method of variation of parameters, using
the boundary conditions at 
=0 and 
=1 to determine the
integration constants c1 and c2.

To make further progress analytically, we need to ap-
proximate the elliptic functions with their asymptotic limits
for small argument, as was done in Ref. 12, so that

K�
� / Ĵ�
�=2 /
. The homogeneous solution becomes

ghom�
� =
1

�
u�1/4 �c1 sinh�2	
u/�̂� + c2 cosh�2	
u/�̂�� ,

�9�

where u=−i�2y− �̂D�, and �̂D=�D0 /�0 is the normalized
magnetic drift frequency. The inhomogeneous part of the dis-
tribution is given by

ginhom�
� =
− 2iŜ

u�0

1 −

	�

4z
�ez2

Erf�z� + e−z2
Erfi�z��� ,

�10�

where z=	2�
u / �̂�1/4, Ŝ=SK�
� /E�
�, Erf�z� is the error
function, and Erfi�z�=Erf�iz� / i is the imaginary error func-
tion. In the limit of z→� �consistent with the assumption
�̂�1�, the error functions can be expanded, and the inhomo-
geneous solution simplifies to
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ginhom�
� =
− iŜ

2u�0
�4 − 	�ez2

/z� . �11�

Since ge0�
=0� is regular, we choose c2=0, and the
boundary condition ge0�
=1�=0 �Ref. 12� gives
c1=−ginhom�1�u1/4 /sinh�2	u / �̂�, so that the solution for the
perturbed trapped-electron distribution is

ge0 =
− iŜ�4 − 	�ez2

/z�
2u�0

+
iŜ�4 − 	�ez2/	

1/4/z�

2u
1/4�0

sinh�z2�
sinh�z2/	
�

, �12�

except in a narrow boundary layer close to 
=0, that has a
negligible contribution to the velocity space integrals. The
nonadiabatic part of the perturbed trapped-electron density is
proportional to

�� ge0d3v� = 4	2
�
0

�

v2dv�
0

1

K�
�ge0d


= 4	2
�
0

�

v2dvI1. �13�

Using Eq. �12�, the integral I1 becomes

I1 = �
0

1

K�
�ge0d
 = −
�iŜ

u2�0
�u − 	u�̂� , �14�

where we retained terms only to the lowest order in �̂1/2 and
we approximated K�
��� /2.

The above analysis is not valid in the boundary layer at

�1. The effect of the boundary layer reduces the colli-
sional term, with a factor � /2	ln �̂−1/2 �see Appendix A for
details�. The reduction is less than 20% in the experimentally
relevant collisionality regime, and in the following analysis
this will be neglected.

Expanding in the limit of small �̂D and keeping terms to
the first order, we have

2I1

�
=

Ŝ�8y2 − 3i	2�̂D
	− iy�̂ + 4y��̂D − i	− 2iy�̂��

8y3�0
.

�15�

Introducing �̂Dt= �̂D /x2, �̂*e=�*e /�0 and �̂t= �̂x3, we obtain

�� ge0d3v�
=

�3/2S0

8
�
1 −

�̂*e

y
� +

3�̂Dt

4y

1 − �1 + �e�

�̂*e

y
��

− i
���3/4�S0

	− i2y�̂t

8y
�1 + �3�e − 4�

�̂*e

4y
+

9�̂Dt

64y

�
4 − �4 + �e�
�̂*e

y
�� , �16�

where S0=−�e�0 /Te�ne4	2
 /�3/2. Neglecting the nonadia-

batic circulating electron response, the perturbed electron
density is

n̂e

ne
=

e�0

2Te
�1 − 	2


1 −

�̂*e

y
� +

3�̂Dt

4y

�
1 − �1 + �e�
�̂*e

y
�� +

��3/4�i	− iy
�̂t

	�y

�
1 + �3�e − 4�
�̂*e

4y
+

9�̂Dt

64y

�
4 − �4 + �e�
�̂*e

y
��� . �17�

IV. QUASILINEAR PARTICLE FLUX

The quasilinear particle flux is given by13

�e = Re�n̂evE
*� =

k�pe

2eB
� e�0

Te
�2

Im
 n̂e/ne

e�0/Te
� , �18�

where the radial E�B velocity is vE�−ik��0 /2B. Taking
the imaginary part of the perturbed electron density from Eq.
�17�, we obtain

Im
 n̂e/ne

e�0/Te
�

= −	


2
Im�−

�̂*e

y
+

3�̂Dt

4y

1 − �1 + �e�

�̂*e

y
��

+
��3/4�	
�̂t

	�
Im� i	− iy

y

1 + 
3

4
�e − 1� �̂*e

y

+
9�̂Dt

16y

1 − 
1 +

�e

4
� �̂*e

y
��� . �19�

The imaginary part of the perturbed density is sensitive to
the sign of the real part of the eigenfrequency �, and the
magnitude of the normalized growth rate �̂. In the following
analysis the quasilinear flux will be calculated for negative
�ITG� and positive �TEM� signs.

A. ITG

ITG modes propagate in the ion diamagnetic direction,
so the real part of the eigenfrequency is negative. Figure 1
shows the quasilinear electron flux from Eqs. �18� and �19�
normalized to pek� / �2eB��e�0 /Te�2	
 as function of normal-
ized collisionality for various values of �̂Dt and �e for a case
where the plasma is far from marginal stability: �̂=0.7.

In the absence of collisions, the flux is inwards if the
curvature and thermodiffusive fluxes �the terms proportional
to �̂Dt and �e in the first row of Eq. �19�� dominate over
diffusion. If collisions are included, the particle flux may be
reversed, if the part of the flux that is dependent on the
collisionality is positive. This reversal happens, for instance,
for �̂Dt=0.2 and �e=4.5 �see Fig. 1�d��.
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However, if the ITG-instability growth rate is weak
��̂�1� and �e is large, the situation is completely different.
Figure 2 shows the normalized quasilinear electron flux for
the same parameters as in Fig. 1, but for �̂=0.1, representing
a case close to marginal stability. The term proportional to
the 	�̂t will change sign and now this will also lead to an
inward flux. If the magnetic drift is high enough to give an
inward flux for zero collisionality, then collisions will

enhance this and the flux will therefore never be reversed. If
the magnetic drift is very small, the flux is outwards for �̂t

=0. Then collisions may reverse the sign of the flux, but now
from outwards to inwards.

It is instructive to expand Eq. �19� for small �̂, and show
explicitly the sign of the different terms in the expression for
the flux. If y=� /�0=−1+ i�̂, then to lowest order in �̂, we
have

FIG. 1. Normalized quasilinear electron flux driven by ITG as function of normalized collisionality for �̂=0.7 and �̂
*e=1. In the upper figures �a and b�: from

above �̂Dt is 0 �solid�, 0.1 �long-dashed�, 0.2 �short-dashed�, and 0.4 �dotted�. �a� �e=3 and �b� �e=6.5. In the lower figures: �e is 3 �solid�, 4.5 �long-dashed�,
6.5 �short-dashed�, and 8.5 �dotted�. �c� �̂Dt=0 and �d� �̂Dt=0.2.

FIG. 2. Same as Fig. 1, but for �̂=0.1.
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�e
ITG =

k�pe

2eB
� e�0

Te
�2�	
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1 −

3�̂Dt
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�1 + �e���̂�̂*e

−	


2

3�̂Dt�̂

4
−

��3/4�	
�̂t

	2�
�− 1 +

�̂

2
+ 
3

4
�e − 1�

�
1 −
3�̂

2
��̂*e +

9�̂Dt

16

1 −

3�̂

2
+ 
1 +

�e

4
�

�
1 −
5�̂

2
��̂*e��� . �20�

If the plasma is close to marginal instability ��̂�0�, colli-
sions �represented by the term proportional to 	�̂t� lead to an
inward flux if �e��crit:

�crit =
4�16�1 + �̂*e� − 9�̂Dt�1 + �̂*e��

3�16 + 3�̂Dt��̂*e

. �21�

For typical experimental parameters, �e is expected to be
larger than �crit, and therefore the total flux is expected to be
inwards. However, if the plasma is further away from mar-
ginal instability, so that �̂�2 /3, the terms to 1–3�̂ /2 and
1–5�̂ /2 change sign, and then collisions will lead to an out-
ward flux, as Fig. 1 shows. Note that the figures show the
quasilinear flux calculated from the unexpanded solution
�Eqs. �14� and �18�� and they are valid even for �̂�1.

B. TEM

The real part of the eigenfrequency is positive, and this
means that y=� /�0=1+ i�̂ and the electron flux to lowest
order is

�e
TEM =

k�pe

2eB
� e�0

Te
�2�	


2

1 +

3�̂Dt

2
�1 + �e���̂�̂*e

−	


2

3�̂Dt�̂

4
−

��3/4�	
�̂t

	2�
�1 −

�̂

2
+ 
3

4
�e − 1�

�
1 −
3�̂

2
��̂*e +

9�̂Dt

16

1 − 
1 +

�e

4
�

�
1 −
5�̂

2
��̂*e��� . �22�

There are two main differences compared with the ITG-
driven flux. First, the part of the flux that is driven by the
curvature has opposite sign compared with ITG, and there-
fore contributes to the outward flux instead of driving an
inward pinch. Second, the part of the flux that arises due to
collisions is different and may have opposite sign compared
with the ITG case, depending on the parameters. Figure 3
shows the normalized quasilinear flux for different param-
eters if the plasma is far from marginal stability ��̂=0.7� and
Fig. 4 shows the same for �̂=0.1. Also here, the magnitude
of �̂ changes the sign of the flux from outward to inward, and
collisions contribute to the inward flux.

C. Collisions modeled by a Krook operator

Starting from the gyrokinetic equation for the electrons
but modeling the collision operator with an energy-
dependent Krook operator, we have

FIG. 3. Normalized quasilinear electron flux driven by TEM as function of normalized collisionality for �̂=0.7 and �̂
*e=1. In the upper figures: from below

�̂Dt is 0 �solid�, 0.2 �long-dashed�, 0.4 �short-dashed�, and 0.6 �dotted�. �a� �e=3 and �b� �e=8.5. In the lower figures: from below �e is 3 �solid�, 4.5
�long-dashed�, 6.5 �short-dashed�, and 8.5 �dotted�. �c� �̂Dt=0 and �d� �̂Dt=0.2.

072308-5 Collisionality dependence of the quasilinear particle… Phys. Plasmas 15, 072308 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



i�� − ��De��ge0 − �effge0 = −
e�0

Te
�� − �

*e
T �fe0 �23�

so that

ge0 = −
e�0

Te

� − �
*e
T

� − ��De� + i�eff
fe0, �24�

where �eff=�T /
x3.
The velocity-space integral of the perturbed electron dis-

tribution can be used to determine the imaginary part of the
perturbed electron density, and that gives the quasilinear flux
from Eq. �18�. If the plasma is far from marginal stability, the
results for the pitch-angle scattering and Krook operator are
qualitatively same, as shown in the upper figures of Fig. 5.
However, as the lower figures in Fig. 5 show, as we approach
marginal stability, the form of the collision operator matters
more and more, and both the sign and the magnitude of the
flux may be very different.

V. DISCUSSION

We have shown that in plasmas that are dominated by
ITG turbulence and are far from marginal stability the sign of
the electron flux will be changed from inward to outward if
the collisionality is increased. Figure 6 shows the threshold
in collisionality for which the flux reverses, i.e., �̂c, as a
function of �e for different values of the normalized mag-
netic drift frequency. The red curves correspond to the pitch-
angle scattering model-operator and the black curves corre-
spond to the Krook model. It is interesting to see that the
pitch-angle scattering operator gives lower threshold for flux
reversal. If we compare the collisionality for zero flux in Fig.

4 in Ref. 8, we find that our result is of the same order
of magnitude. Figure 4 in Ref. 8 is computed for �e=3,
R=3 m, r=0.5 m, a=1 m, s=1, q=2. For these parameters
the trapped-electron flow changes sign for �e�0.006cs /a,
where cs=	Te /mi is the ion sound speed. This collisionality
corresponds to �̂c�0.1. This is in agreement with our thresh-
old, shown in Fig. 6 for �e=3 and �̂Dt=0.7. Note that Fig. 4
in Ref. 8 is the result of a nonlinear gyrokinetic simulation
so �̂Dt is not constant and therefore exact comparison is not
possible.

The analytical calculation presented in this paper is an
attempt to shed light on the numerical calculations men-
tioned above. For this purpose it is necessary to make a
number of simplifications, some of which may be justified
within a rigorous ordering scheme. However, it should be
noted that some approximations are more qualitative, in par-
ticular those having to do with the mode structure, which we
do not solve for. The approximation we use for the perturbed
electrostatic potential breaks down for low shear or near
marginal instability. It appears that the qualitative features of
the transport are captured by our calculations, but for quan-
titatively accurate results one of course has to resort to nu-
merical simulations.

As we have seen, the effect of magnetic drift is impor-
tant to understand the sign change of the quasilinear flux due
to the ITG modes. The magnetic drift gives an inward flux
for zero collisionality, but this is reversed when �̂t��̂c.

VI. CONCLUSIONS

The collisionality dependence of the quasilinear particle
flux due to microinstabilities has been determined for large
aspect ratio, circular cross section plasmas. It has been
shown that if the plasma is far from marginal stability, the

FIG. 4. Same as in Fig. 3, but for �̂=0.1.
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inward transport due to ITG modes is reversed as electron
collisions are introduced, in agreement with nonlinear gyro-
kinetic simulations. However, if the plasma is close to mar-
ginal stability, collisions will lead to an additional inward
flux, and therefore the total flux is expected to be inwards.
The transport is therefore affected significantly by the param-
eter �e, both directly via the terms proportional to �e in the
expression for the flux, but also indirectly via the ITG
growth rate, which is important to determine the sign of the
flux.

If the electron collisions are modeled with a pitch-angle
scattering collision operator, the particle flux is proportional
to the square-root of the collisionality. The choice of the
model collision operator affects the collisionality threshold
for the reversal of the particle flux; i.e., �̂c. This is especially
important when the plasma is close to marginal stability. The
collisionality threshold �̂c depends on the magnitude of the
normalized magnetic drift �̂Dt and the ratio of density and
temperature scale lengths; i.e., �e. For higher �e and higher
�̂Dt, higher collisionality is needed to reverse the particle
flux.

The magnitude and the sign of the TEM-driven quasilin-
ear flux has also been determined. The TEM-driven flux is
expected to be outwards if the plasma is far from marginal
stability and inwards otherwise, for typical experimental pa-
rameters, and the presence of collisions contributes to the
inward flow.
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APPENDIX A: BOUNDARY LAYER ANALYSIS
FOR �¶1

In the outer region, far away from the trapped/passing
boundary we can neglect collisions, and the solution of Eq.
�7� is

FIG. 5. �Color� Normalized quasilinear electron flux driven by ITG as function of normalized collisionality for �̂
*e=1. The red curves are for the pitch-angle

scattering operator and the black are for the Krook operator. In the left figures �a and c� �e=3 and from above: �̂Dt is 0 �solid�, 0.2 �dashed�, and 0.6 �dotted�.
On the right, figures �b and d� �̂Dt=0.2 and from above: �e is 3 �solid�, 5.5 �dashed�, and 8.5 �dotted�. The upper figures �a and b� are for �̂=0.7, and the lower
�c and d� for �̂=0.1.

FIG. 6. �Color� Collisionality threshold as a function of �e for �̂=0.7 and
�̂

*e=1. Above the lines, the transport is outwards, and below it is inwards.

The different lines correspond different values of �̂Dt: from below �̂Dt is 0.2
�solid�, 0.4 �long-dashed�, 0.6 �short-dashed�, and 0.8 �dotted�. The red lines
are for the pitch-angle scattering operator and the black are for the Krook
operator.
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gouter =
ŜE�
�

�� − ��De��K�
�
. �A1�

The width of the boundary layer can be estimated by com-
paring ��̂ge0� � using the outer solution for ge0 and the term on
the right-hand-side of Eq. �7�, leading to �1−
�� �̂1/2.

In the inner region we can approximate the ellip-
tical integrals with their asymptotic forms for 
=1,

giving E�
��1, Ĵ�
��1, K�
�� ln�1 /	1−
�� ln �̂−1/4� K̂.
Changing variables in Eq. �7� to t= �1−
� /	�̂ gives

�2ginner

�t2 + iK̂
y −
��De�

�0
�ginner = i

Ŝ

�0
, �A2�

and the solution is

ginner =
Ŝ

�� − ��De��K̂
+ ĉ1 exp�− �1 − 
�	ûK̂/�̂�

+ ĉ2 exp��1 − 
�	ûK̂/�̂� , �A3�

where û=−i�y− ��De� /�0�. ĉ1 is determined by the boundary
condition ge0�
=1�=0 and ĉ2=0 to match the inner and
outer solutions. The global solution is then

ge0 =
ŜE

�� − ��De��K
�1 − exp�− �1 − 
�	ûK̂/�̂�� . �A4�

Using the global solution from Eq. �A4�, the collisional term
becomes

�
0

1

K�
�
− ŜE�
�

�� − ��De��K�
�
exp�− �1 − 
�	ûK̂/�̂�d


� −
Ŝ	�̂

�� − �D0/2�	ûK̂
�A5�

since the dominant part of the integral comes from 
�1.
Comparing with the corresponding term in Eq. �14�, we find
that the effect of the boundary layer reduces the collisional
term, with a factor �� /2	ln �̂−1/2�.

APPENDIX B: COMPARISON WITH THE SOLUTION
FOR �̂DT=0 IN REF. 12

In Ref. 12, the effect of the magnetic drift has been
neglected �that is, �̂Dt=0�, and the perturbed trapped electron
distribution has been calculated to be

ge0 = −
e�0

Te
�1 − �

*e
T /��fe0
1 −

2J1�a�
aJ0�a�� , �B1�

where a= �1+ i�	4�
 /�e�v��ar�1+ i�. There is excellent
agreement between our results in the limit of �̂Dt=0 �both

the expanded solution and the full WKB solution� and the
one published in Ref. 12. The perturbed electron density is
�Eq. �28� of Ref. 12�

n̂e

ne
=

e�0

Te
�1 −

8	2


�3/2 �
0

�

x2e−x2
dx
1 −

2J1�a�
aJ0�a��

�
1 −
�*e

�
�1 − �e�x2 − 3/2���� . �B2�

If the real part of the frequency is negative ��=−�0

+ i��, where �0�0, then for ar�1 and �̂�1, we have

Im
 n̂e/ne

e�0/Te
� = −

2	2


�
��̂*e�̂ + ��3/4�

�	 �̂t

�
�1 + �̂*e�1 − 3�e/4��� . �B3�

This is in agreement with our results in the limit of �̂Dt=0.
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