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Abstract

A calculation of cross sections for the inelastic scattering of electrons from core levels is carried out based on a model in

which core level electrons are excited into a free-electron-
assumes oscillator strengths appropriate to band-to-band e

like band state. A simplified model is also developed that
xcitations in solids. The results for Al L,, and Mo M, ;5 cross

sections are compared with a number of previous calculations. These previous calculations include: (a) the constant-
oscillator-strength model, (b) the Rez model (based on excitations to atomic-like states), and (c) the semi-empirical
hydrogenic model proposed by Egerton. We have incorporated optical data into all of the models considered in this
paper with the exception of Egerton’s. Calculations are presented for incident electron énergies of 100, 200 and 500 keV,
collection angles of 1-41 mrad, and energy collection windows of 20-200 eV. Comparison is also made with experiment

where possible and reasonable agreement is found.

1. Introduction

A discussion of the factors affecting the accuracy
of elemental analysis by electron energy-loss spec-
troscopy has been given by Egerton [1]. A key
ingredient is knowledge of the inelastic scattering
cross sections for excitations from the core levels in
solids. Previous theoretical calculations have been
based on either hydrogenic atomic models [2-8] or

* Corresponding author.

on numerical Hartree-Slater type calculations for
atoms [9-14]. Calculations by Egerton [7] and
Luo and Zeitler [8] make use of experimental op-
tical data to calculate cross sections for some ele-
ments. .

This paper presents a new model for the calcu-
lation of innershell excitation cross sections in
which the final state of the excited electron is de-
scribed by a free-electron band rather than the
excited state of an atom. Experimental optical data
are incorporated into the model in such a way that
energy losses involving small momentum transfers
are taken into account in a correct manner, i.. the

0304-3991/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved

PII 80304-3991(97)00039-9



70 D.R. Penn et al. [ Ultramicroscopy 69 (1997) 6981

calculated cross sections are expected to be correct
for small-angle scattering. The availability of op-
tical data should make it possible to apply this
model to a number of solids.

A simplified alternative method for calculating
cross sections is also developed, based on previous
work appropriate to band-to-band transitions in
solids. This method is much more convenient to
use, but has no a priori justification. It gives numer-
ical results that are similar to those of the first
method for a limited range of parameters.

The theory for the cross section calculation is
presented in Section 2 and the simplified method is
described in Section 3. Cross sections for the exci-
tations of Al L,5 and Mo M, core electrons based
on the method of Sections 2 and 3 are given as
examples of our proceedure in Section 4. Cross
sections predicted by our model are presented for
incident electron energies of 100, 200 and 500 keV,
collection angles of 1-41 mrad, and energy collec-
tion windows of 20-200 V. We also compare our
calculated cross sections to those calculated using
alternative models. These models include: (a) our
simplified model, (b) the constant-oscillator-strength
model, (c} the Rez model (based on atomic cross
sections), (d) the semi-empirical atomic model intro-
duced by Egerton with cross sections determined
from Egerton’s SIGMALS3 [7] program for Al. The
calculations are compared for incident electron ener-
gies of 100 keV, collection angles of 1-41 mrad, and
energy collection windows of 20-200¢eV. A cross
section calculation for a single set of parameters has
been given in Ref. [8] for various atoms, and we
compare our result for Mo M, 5 excitations with the
value from that reference. Cross sections calculated
“with the present model have been compared with
experimental results [19-217 for Al L, excitations
and the results are in reasonable agreement. Sec-
tion 5 gives the conclusions of this work.

2. Theory of the cross sections

The differential cross section for inelastic scatter-
ing of an electron from a target is

d’s _ 4y’Rk, df (¢.E)

(1a)

dQdE  E*¢*k, dE

involving energy loss E and momentum transfer
¢q into a solid angle Q is given by

y =1 =02, (1b)

where v is the velocity of the incident electron and
cis the speed of light. The quantity R = 13.6 eV, kq,
k4 are the momenta of the electrons before and after
scattering, and df/dE is the generalized differential
oscillator strength of the target. For incident elec-
trons of energy E, much greater than the energy
loss, the momenta satisfy k; ~ ko. Use of dQ2 =
nd(q®)/k,ko in Eq. (1a) gives

do _dn_ 3> jd(qZ) df (4.E)

= = 2
dE  Ey*—1 "m**) ¢* dE @)
where m is the electron mass and where the rela-
tionship

kg = (m*c?/*)y* — 1) )

has been used.
The generalized oscillator strength per atom in
a solid is related to the dielectric function, €(q,w),

by [15]

d 2E
& @) =2 I~ 1/e(go) (4

where w = E/h, E, is the plasmon energy corres-
ponding to one electron per atom,

2\1/2
E = h<4n% %) , (4b)

N, is the number of atoms, and V is the volume of
the solid. For the case of energy loss from core
excitations, €; ~ 1 and €, < 1 where €, €, are the
real and imaginary parts of €(q,). Thus,

Im( — 1/€(q,0)) = €,(g,0) (5)
and Egs. (2), (4a), (4b) and (5) give

de 2 9 11qu

- = — | e
dE  mmc*y* —1(N,/V)ao ) ¢ Ae®) (6)

where a, is the Bohr radius.
The contribution to the imaginary part of the
dielectric function of the solid due to excitations
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from a given core level described by quantum num-
bers ¢ = (n,l,m), is given by

4n2e? .
€3(q.w) = o Y (1= f IKkle™ " |cyl?
q m,k
x oE, — E, — hw), (7)

where the summation is over the azimuthal quan-
tum number, m, and the valence band states, k, and

Jr is the occupation number of the state k. The

corresponding wave functions are |¢> and |k}, and
the energies are E, and E,. The valence band of the
solid is approximated by a single free-electron-like
band with a wave function given by an ortho-
gonalized plane wave

> = = 5 4

o

ik-r

%}mm, ®

where the summation is over all core states of the
atom including the state from which an electron is
excited, c. The simplicity of the model for the excit-
ed states is compensated for by making use of
experimental optical data for the imaginary part of
the dielectric function, €5**(w). This is done by
multiplying the expression for €% by the factor
"{w),

() = €5*"(w)/€3(q = O,w), ©)

where €%3(q = 0,w) is the ¢ =0 limit of the cal-
culated dielectric function for the solid, Eq. (7). This
procedure ensures that for ¢ =0 the calculated
value for €% will agree with the experimental value.
Consequently, it is the momentum dependence of
€%(q,w) that is modeled here, not the o dependence.

The summation over k in Eq. (7) requires the
evaluation of

IM(kg) | = [<kle ™ |c> P, (10)

where |k> is given by Eq. (8). From Eq. (7), the
magnitude of & is given by E, = E, — hw where
E, = (hW*/2m)k>.

The contribution to the imaginary part of the
dielectric function for excitations from the core
level n, [ is obtained from Egs. (7) and (9) as

kag N

slmuk.g)*r"(w), (11)
7 (qao)

Egl(q’w) =

where

|mnl(k>q)|2 = Jdék Z |Mnlm(k’q)|2> (12)

dek denotes an integration over solid angle, M is
given by Eq. (10), k is related to the energy loss
E = how by

E = (h¥/2m)k?> — E" (13)

and E}' is the energy distance from the core level to
the bottom of the valence band. Note that the
contribution of each atom in the target to €%(g,w) is
included (incoherently) through the term N, in
Eq. (11). The cross section per unit energy per
atom, de"'/dE, is obtained from Eq. (6).

The experimental quantity of interest is the mea-
sured area under an energy loss peak, i.e. the num-
ber of electrons collected with energies ranging
from threshold, E' to an energy 4 above threshold
and covering an angular range from 0 to § where
p is the maximum collection angle. The range of
integration over ¢ in Eqs. (2) and (6) is related to g.
Use of Eq. (11) in Eq. (6) gives

2 S
l dE r(E)ka

Oy = —
"owtmcty? —lag Jp

) f da i)

, (14)
wn 4 (qa)’

where y is given by Eq. (1b), #"(E) is given by
Eq. (9), k is given by Eq. (13), and |m,(k,q)* is
defined in Eq. (12). The limit ¢, is given by

(qmina())2 = E2/4RT> (1 sa)

where R = 13.6eV and T = (1/2) mv? is the non-
relativistic kinetic energy of the incident electrons
that is related to the actual energy E, by

T = Eo(1 + Eo/2mc?)/(1 + Eq/mc?)? (15b)
The limit gy, is defined by

(dmaxt0)* = (dminto)* + 4y*(T/R)sin*(B/2), ~ (15c)
where

Y2T = Eo(1 + Eo/2mc?) (15d)
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There are additional relativistic corrections [7];
in Eq. (14) for o, the quantity 1/¢* is replaced by

1/¢4° - RajC,C, (16a)
where
Ci=07 =2y - YY*QE, — Q)]

+(Eo — Q)% + (Eo + mc?)~2 (16b)
Cy = Q — E§(2y*mc?)~1 (16¢c)
and
Q = R(qao)* ~ (E3/2mc?) (16d)

The quantity [m,,(k,q)? given by Eq. (12) appears
in the final expression, Eq. (14), for ¢,; and is evalu-

ated as follows:
. eik-r
Imu(k,q)? = fdgkz < Vi

2
-y bnfzfmf(k)¢nfzfmf(r)le*“’"l¢nzm(r)>
n'l'm'
(17a)
where
eik‘r
r st = e am

and where the summation over n'I'm’ includes all
core levels. It is shown in Appendix A that if ¢,,, is
of the form

¢nlm(r) = Rnl(r) Ylm('ér)a (18)
then

(4m)? <l’ I l)
2= 2N 20+ DR+ 12 + 1
Imy(k.q)] 7 IZI( + DR+ 102 + )000

X {Z Ut (RNt ARYO 11 @)O ey ()
-2 Z un’l/(k)enn’ll’l”(q)rnll’l”(k’q)}

2
+ @-ﬁﬂ + Duy (& + q))* dQ,,

(19a)

where

Uy (k) = f : 2 drR,(r)j; (kr) (19b)
Ouer@) = [ 7 4Ry ORarr (19
and

Trnlhog) = f PR itk (194)

ll I/I I
and (0 0 0) is a 3-j symbol and Ji(kr) is a spherical
Bessel function.
It is shown in Appendix B that for ¢ — 0

4 2
im0 = 472

1 2l +1 1
X[g(f + 1)(21§+3-; Aty + glAzz—an ], (20a)

where

At = J r? drji (kn)Ru(r) =Y | 2 iy (kr)
0] n JO

X Ry 1 (1) f P ARy (DR ) (20b)
0

where I; =1+ 1.

In order to evaluate |m,(k,g)|> numerically the
atomic wave functions R,,,(r)Y,m(Qr) are obtained
from tables [16] of Roothan Hartree—-Fock atomic
wave functions and R,(r) takes the form of a sum of
powers of r times exponential functions of r, i.e.,
rPe”% where p is an integer. This procedure allows
most of the integrations appearing in Egs. (19a),
(19b), (19¢), (19d), (20a) and (20b) to be done
analytically.

3. Alternative method for calculation of the cross
section

A useful method for calculating the inelastic
mean free path of a fast electron in a solid due to
scattering by conduction electrons was suggested
by Penn [17]. This method is the basis for a general
scheme developed by Tanuma et al. [18] in which
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inelastic mean free paths are predicted from a
Bethe-like formula using parameters of the solid
such as density, number of valence electrons per
atom, the band-gap energy, and the atomic or mo-
lecular weight.

The method developed by Penn gives an approx-
imate expression for the dielectric function of
a solid. It is based on a type of statistical approxi-
mation in which the solid is characterized by the
Lindhard dielectric function. The Lindhard func-
tion describes the response of a free-electron gas to
an excitation and depends on the electron density
of the solid. In this version of the statistical approx-
imation, the dielectric function is averaged over the
electron density of the solid in such a way that the
predicted value of Im(1/€(g = 0,w)) is equal to the
measured optical value, Im( — 1/€*¥(w)). The for-
mula for Im( — 1/€(q,w)) is

—1 o -1
Im— = dw,G(w,)Im ——— 21a
€o) J Sy B
where
2 -1

and € (q,m;w,) is the Lindhard dielectric function at
a value of the electron density » such that
2
2 _ 4nne

0y = (21¢)

For electron energies much greater than the plas-
mon energy, the Lindhard dielectric function can
be replaced by a one pole approximation

-1 T o}
ImG(q,w;wp) " 20,9 oo~ odq) (222)
where
w(q) = wf + 3[vew,)q]? + (hg*/2m)?, (22b)

where vg(w,) is the Fermi velocity evaluated for
a free electron gas with a plasmon energy o,
A simpler version of the one-pole approximation is

(22¢)

This method of approximating Im( — 1/€(q,w)) is
primarily a scheme for estimating the g dependence

since the w dependence is fixed by the condition
Im(— 1/€(g = 0,w)) = Im(— 1/€¥*F(w)). Because of
the simplicity of this method relative to that de-
scribed in the previous section, it will now be ap-
plied to the problem of electron scattering from
core states even though there is no a priori reason
why it should give accurate results. Eq. (22¢) is used
in Eq. (22a) to obtain

-1 (o- (hq?/2m)) —1
I Im<eEX*’(w _ (hq2/2m))>'

elqw) »
(23)

The innershell excitation cross section is obtained
from Egs. (2), (4a) and (23). The relativistic correc-
tions given by Egs. (16a), (16b), (16¢c) and (16d) are
also used.

In the next section the numerical results obtained
from this method will be compared with those
described in Section 2.

4. Numerical results

The formalism presented in Section 2 is applied
to the case of Al L, excitations (n =2, [ = 1} and
Mo M,; excitations (n = 3, [ = 2) for which there
are good optical data available for €5*F(w) [19].
Calculated cross sections for the incident electron
energy E, = 100 keV are shown in Figs. 1 and 2 for
values for the collection angle ranging from
f = 1-41 mrad, and for values of the energy win-
dow, A, from 20 to 200 eV. The very different be-
havior seen in the two figures is due to the
differences in the core level wave functions for the
p state of Al and the d state of Mo. This sensitivity
to the core state strongly effects the ¢ dependence of
the matrix element in Eq. (7). Tables 1 and 2 give
numerical values of the cross sections for Al and
Mo, respectively. Results are reported for incident
electron energies of 100, 200 and 500 keV, collec-
tion angles § from 1-41 mrad, and energy windows
A from 20-200 eV.

The simplified method for calculating the cross
section presented in Section 3 is now compared
with the more fundamental approach of Section 2
for the cases of Al L,5 and Mo M, excitations. The
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Fig. 1. Calculations of the cross section versus energy collection
window 4 predicted by our model for Al L,; excitations. The
incident electron energy is 100 keV. Values of the collection
angle f vary from 1 to 41 mrad.
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Fig. 2. Same as Fig. 1, but for Mo M, excitations.

cross sections determined in Section 2 will be de-
noted by ¢ and those from Section 3 by o,. The
percentage difference 100(6 — g4)/o versus 4 is
shown in Figs. 3 and 4 for Al and Mo, respectively,
for an incident electron energy of 100 keV and

Table 1
Values of the Al L, cross sections given by our calculations

Eo =100keV E, =200keV E, = 500 keV

B (mrad) 4 (eV) o (barns) a (barns) o (barns)
1 20 1.15x 10* 1.21 x 104 1.29 x 10*
40 215 233 2.55
60 2.81 3.11 348
80 3.18 3.59 4.07
100 343 393 4.51
120 3.58 4.14 4.81
140 3.71 4.33 5.08
160 3.81 4.49 532
180 3.89 4.62 5.53
200 3.95 4.72 5.69
6 20 327 2.54 2.08
40 6.49 5.08 4.21
60 8.86 6.99 5.82
80 10.40 8.24 6.90
100 11.53 9.18 7.73
120 12.31 9.84 8.31
140 13.00 10.44 8.85
160 13.63 10.99 9.36
180  14.19 11.48 9.82
200 14.61 11.86 10.17
11 20 392 2.87 220
40 7.85 5.80 4.48
60 10.79 8.01 6.23
80 12.72 9.49 7.39
100 14.17 10.60 8.29
120 15.18 11.39 8.93
140 16.11 12.13 9.53
160 16.96 12.81 10.10
180 1772 13.42 10.63
200  18.30 13.90 11.03
21 20 4.39 3.05 2.23
40 8.89 6.22 4.57
60  12.29 8.62 6.34
80 14.54 10.22 7.54
100 16.25 1145 8.45
120 17.47 12.33 9.11
140  18.60 13.16 9.74
160 19.66 13.93 10.33
180 20.62 14.65 10.88
200  21.36 15.22 11.31
41 20 4.56 3.09 2.24
40 9.33 6.32 4.58
60 1292 8.77 6.36
80 15.31 10.40 7.55
100 17.14 11.65 847
120 18.45 12.55 9.13
140 19.69 1341 9.75
160 20.86 14.22 10.35
180 21.94 14.97 10.90
200  22.79 15.56 11.34

The incident electron energies are Eq = 100 keV, E, = 200 keV,
Eo =500keV. The collection angles range from f=1 to
B =41 mrad and values for the energy window are from 4 = 20
to 4200 eV.
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Table 2
Values of the Mo M, 5 cross sections given by our calculations

Eo=100keV E, =200keV E, = 500 keV

f (mrad) 4 (V) o (barns) o (barns) o (barns)
1 20 0.19x10° 0.31x 103 0.48 x 10°
40 050 0.82 1.33
60 090 1.49 248
80 1.31 2.23 3.79
100 1.69 291 5.05
120 201 3.50 6.18
140 229 4.01 7.21
160 252 4.46 8.14
180 272 4.85 8.98
200 2.89 5.18 9.70
6 20 1.29 1.15 1.11
40  3.60 326 3.17
60  6.62 5.99 248
80 10.05 9.12 8.64
100 13.36 12.19 11.56
120 16.37 15.01 14.28
140 19.10 17.61 16.82
160 21.59 20.02 19.20
180  23.83 2221 21.39
200 25.77 24.14 23.33
11 20 1.81 1.52 1.41
40 517 4.34 3.99
60  9.32 7.71 6.81
80 14.06 11.56 10.02
100 18.71 15.39 13.28
120 23.00 18.97 16.36
140 2696 22.30 19.26
160 39.12 2541 21.98
180 4349 28.26 24.50
200 36.86 30.79 26.76
21 20 251 2.02 1.68
40 713 5.70 4.78
60 12.23 9.49 7.81
80 18.01 13.78 11.14
100 23.84 18.15 14.55
120 29.28 22.27 17.80
140 3437 26.16 20.87
160 39.12 29.81 23.78
180 4349 33.19 2648
200 47.36 36.20 28.90
41 20 334 241 1.75
40 943 6.86 5.02
60 15.14 10.96 8.11
80  21.42 15.41 11.47
100 27.87 19.98 14.92
120 33.98 24.33 18.20
140 3977 28.46 21.33
160 4521 3236 24.28
180  50.26 3598 27.03
200 5475 39.22 29.48

The incident electron energies are E, = 100 keV, E, = 200 keV,
Eo =500keV. The collection angles range from f=1 to
f = 41 mrad and values for the energy window are from 4 = 20
to 4 =200eV.

Al Simplified Model
—eee B= 1mrad
20+ — — B= 6mrad .
— B =11 mrad
-~ B=21mrad
§ —~" B=41mrad
g oF S ,_-__/_‘;}r_;;-i‘—_'_—_f_'_—;_—_l__ i
E - ”, - //
(o) . . //
5§20t /7 1
)
o
40+ 4
Eo =100 keV
1 | 1 1 1
0 50 100 150 200
A (aV)

Fig. 3. The percentage difference of the simplified model (Sec-
tion 3) compared to the more fundamental model (Section 2)
versus energy collection window 4 for Al L,; excitations. The
incident electron energy is 100 keV. Values of the collection
angle f vary from 1 to 41 mrad.

Mo Simplified Model |
20~ -
]
Q
@
s Or 1
=
fa)
Q
o
hat}
g 20 —
o
o
40+ -
7 Eq = 100 keV
1 1 1 1 1
0 50 100 150 200
A (eV)

Fig. 4. Same as Fig. 3, but for Mo M5 excitations.
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values of § between 1-41 mrad. It is found that the
percentage difference between ¢ and g, decreases
with increasing 4 and decreasing values of f.

The cross sections, ¢ and g,, calculated in this
work are expected to be most accurate for small
values of ff because this condition implies small values
of momentum transfer. For f =1 mrad and the
energies considered here, E, = 100-500 keV, the
maximum momentum transfer g,.,, given by Eq. (15¢)
is such that ¢,,,.a, takes values 0.1 to 0.4; conse-
quently, €5(qmax ®) ~ €%(q = 0,0) to within a few
percent according to our calculations. The use of
a normalization factor, Eq. (9), ensures that in this
case the cross section is determined entirely by the
experimental data €5*(w) rather than from the cal-
culated values, €3. Consequently, the present calcu-
lation is expected to be very accurate for f = 1 mrad.

We compare our results with other calculations:
the constant-oscillator-strength model, the Rez
model, and Egerton’s computer program (SIG-
MAL3). The constant-oscillator-strength model as-
sumes that the matrix element in Eq. (7) is constant.
Because of the use of experimental optical data, as
discussed in the previous paragraph, this model will
also be most accurate for small values of . The Rez
model [13] is modified by us so that it makes use of
optical data in the same way as for our work. This
procedure ensures that it also gives correct values
for the cross sections for small values of f. Eger-
ton’s computer program is based on a hydrogenic
model with an empirical correction based on
photoabsorption data.

Plots of the percentage difference between the
constant-oscillator-strength model and our calcu-
lations as a function of the energy collection win-
dow are shown in Figs. 5 and 6 for Al and Mo,
respectively, for an incident electron energy of
100 keV and values of B between 1 and 41 mrad.
Similar plots of the percentage difference between
the Rez model and our model are shown in Figs. 7
and 8 for Al and Mo. Figs. 5 and 7 for Al and
Figs. 6 and 8 for Mo are quite similar. This result
occurs because the Rez model predicts the matrix
element in Eq. (7) to have a weak momentum de-
pendence while the constant-oscillator-strength
model assumes zero momentum dependence. The
momentum dependence in our model is quite differ-
ent, especially for Mo.

Al Constant-Oscillator-Strength Model
20 T
® T
5
;u_;) 0 - ____T_:_T..______'..:._T_______'_____.T_:—_. -
o
QD
o
g
g 201 .
o
o
—ea- Bp= 1mrad
— — Bp= 6mrad
40r B =11 mrad ]
2. p=21mrad Eg = 100 keV
77 B=41mrad 0
0 50 100 150 200
A (eV)

Fig. 5. The percentage difference of the constant-oscillator-
strength model compared to our fundamental approach versus
energy collection window 4 for Al L, excitations. The incident
electron energy is 100 keV. Values of the collection angle f§ vary
from 1 to 41 mrad.

Finally, Egerton has devised a simple calculation
for the cross section based on the hydrogenic
model that makes use of photoabsorption data.
The cross sections are given by his Fortran pro-
gram [7], and the percentage difference between
results from his model and ours is shown in Fig. 9
for Al, an incident electron energy of 100 keV and
values of f between 1 and 41 mrad. Even for
B = 1 mrad, where our results are expected to be
very accurate, there is a very large discrepancy
between the two calculations. As expected, the dif-
ferences are found to be large for small values of
4 due to the limitations of the hydrogenic model in
describing the shape of €, near the excitation
threshold.

Luo and Zeitler [8] have calculated the Ms-
shell cross section of Mo using a hydrogenic model
for the momentum dependence of Im(— 1/€). For
E,=60keV, f=10mrad, and 4 = 100 eV, they
obtain ¢ = 23.8 kbarns whereas the present calcu-
lation with optical data from Ref [23] yields
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T T T T T
Mo Constant-Oscillator-Strength Model
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Fig. 6. Same as Fig. 5, but for Mo M5 excitations.
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Fig. 7. The percentage difference of the Rez model compared to
our fundamental approach versus energy collection window
Afor Al L,; excitations. The incident electron energy is 100 keV.
Values of the collection angle 8 vary from 1 to 41 mrad.

o = 20.0 kbarn, a difference of about 16%. The
calculation of Luo and Zeitler also makes use of
similar optical data for describing the dependence
of the differential cross-section on energy loss.
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Fig. 8. Same as Fig. 7, but for Mo M, excitations.
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Fig. 9. The percentage difference of the Egerton hydrogenic
model compared to our fundamental approach versus energy
collection window 4 for Al L,; excitations. The incident elec-
tron energy is 100 keV. Values of the collection angle § vary
from 1 to 41 mrad.

It is clear that very different results for the cross
sections are obtained from the various models. This
is due to the differing momentum dependences in
the models for the matrix element of Eq. (7).
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Table 3

Comparison of experimental measurements of Al L, cross
sections with our theoretical calculations. The experimental
data are from Crozier [20] (C); Hofer et al. [21] (H), and Malis
and Titchmarsh [22] (MT) for E, = 100keV, 4 = 60 eV, and
various values of

B (mrad) Experimental cross sections Theoretical cross

(kbarns) sections (kbarns)
C H MT
5 100+ 5 63 98 83
21 150 + 15 123
120 190 + 30 109 131

For f =1 mrad, the matrix element is constant,
independent of momentum and all the calculations
give essentially identical results (with the exception
of Egerton’s which does not incorporate optical
data in the same way as the other calculations).

In Table 3, cross sections calculated with the
present model (Section 2) are compared with ex-
perimental results [19-21] for Al L,, excitations
and the results are in reasonable agreement (al-
though we have assumed the momentum depend-
ence of Im(— 1/€) to be the same for the Al L, core
level as for the Al L, levels).

5. Conclusions

We have presented a new model for calculating
cross sections for excitations of core electrons by
fast electrons. It is assumed that the core electrons
are excited to states appropriate to a conduction
band in a solid rather than to an atomic state
[2-14]. The band state is described by an ortho-
gonalized plane wave with free-electron dispersion.
The model makes use of experimental optical data
to ensure that the calculated cross sections are
correct at small scattering angles. Thus, it is the
momentum dependence of the cross section that is
modeled as opposed to the dependence on the
energy loss. The details of the model have been
described in Section 2. The cross sections predicted
by the model are shown in Figs. 1 and 2 for Al and
Mo, respectively, and numerical values are given in
Tables 1 and 2.

We have also introduced a much simpler and
more convenient model for the calculation of cross
sections. This model, discussed in Section 3, is one
that has been used successfully to calculate inelastic
mean free paths of fast electrons where conduction
band excitations are responsible for most of the
inelastic scattering [17, 18]. Although there is no
a priori reason for this approach to work well for
calculating cross sections involving core excita-
tions, we have carried out such calculations in the
hope that they would be in reasonable agreement
with our more realistic model. Cross sections for
our more accurate model and the simplified model
are compared in Figs. 3 and 4 for Al and Mo. For
small values of §, the two methods agree very well
because they both make use of optical data that
ensures correct results for f = 0. They also agree
well if 4 is sufficiently large (i.e., the condition for
which inelastic mean free paths were calculated
[17,18]).

We have compared our calculated cross sections
with those given by the simpler method discussed
above, as well as with cross sections given by three
other models. The three other models are (a) the
constant-oscillator-strength model, in which the
matrix element in Eq. (7) is taken to be constant, (b)
the Rez model, an atomic model for the excitations,
and where we have normalized the calculated cross
section using experimental optical data, and (c)
Egerton’s hydrogenic model in which he has made
use of some experimental optical data. For all the
models considered here except Egerton’s, the use of
optical data guarantees that they yield correct cross
sections at small values of the collection angle, B,
and that the differences in predicted cross section
arise from the momentum dependence, g, of the
model.

Results for the different models are compared in
Figs. 3-9 for an incident electron energy of
100 keV, values of § from 1 to 41 mrad, and values
of the energy collection window from 20-200 V.
Our simplified model gives cross sections that are
similar to those given by our more accurate model
when the energy collection window is relatively
large (greater than 100eV). The constant-oscil-
lator-strength model gives cross sections that differ
from our model by slightly larger amounts than
those predicted by the Rez model. In all cases, the
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dependence of cross section on energy collection
window is very different in Al and Mo due to the
differences in the momentum dependence of the
generalized oscillator strengths.

The results from our accurate model for Al
L, excitations have been compared to results from
the Egerton model [7] in Fig. 9, and it can be seen
that there are large differences in the predicted
cross sections, even for small values of § where our
model must give accurate cross sections. Cross sec-
tions calculated with the present model have been
compared with experimental results [19-21] for Al
L,; excitations and the results are in reasonable
agreement.

Appendix A.

We derive Eqs. (19a), (19b), (19¢) and (19d) in the
text. The orthogonalized plane wave, ¢,, that de-
scribes a valence state is given by

Gulr) =€ = 3 {Dwrmle™ > Gurm (1) (A.1)

n'l'm’
where the normalization of ¢, is neglected because
the expression of 4, given by Eq. (14) involves
€%(q,0)/€%(q = 0,0) so that the normalization fac-
tors approximately cancel. The core wave function
is

¢nlm(r) = Rnl(r) Ylm(‘ér) (Az)

and use of

S anY k) Y VROYWO) (A
1=0 m= -1

in <¢n'l’m’|ejk.r> yields

(urmle™ "y = AT Y Ep (D)t (K), (A.4a)

where

U (k) = J dr 12 (kr) Ry (7). (A.4b)
0

The wave function ¢, then takes the form

eik‘r 47
W V1/2 Z l Ylm(Qk)unl(k)¢nlm(r)

" (A.5)

bi(r) =

Use of Eq. (A.4a) in

Mnlm(kaq) = <¢k I e~iq~r | ¢n1m>
yields
where
eik'r .
Miz}r)n = <V1/2|e~lq.r|¢n1m> (A6b)
(2) 4n A By %

My =~ vz 12 , (= DY A€ ust (k)

X <¢n’l’m’l e¥iq.r|¢n1m>' (A6C)

Expanding € " and ¢'* " via Eq. (A.3) and substitu-
ting the result in Eq. (A.6b) gives

a (4m)?

Mnlm - V1/2 z Fnlll k’Q) (l,mll// ”lm)( )l +l
r''m'm’

X Y 1 Q) Y (R, (A.72)

where I' is given by Eq. (19d) and
W('m' I"m" Im) = de) YEAQ)Y 1l DY 1 Q) (A.TD)
rr l>
—m'm' m)
where

TNYell) = (= DL + e +

« (dm)~! <l’ " l>
i
000
and

< rr l>
—mm'm

is a3 —j symbol.
Expanding e '4'" as in Eq. (A.3) and substituting
in Eq. (A.6c) gives

= (Y (= 1" < (A.7¢)

121 + 1)]'2

(A.7d)

— (dr -
M= 3 W
X (U 'm )Y (@)Y Q) (AB)

where 0, 1s defined in Eq. (19¢).
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The quantity |m,, (k,q) |* defined in Eq. (12) is
required for evaluating the cross section. From
Eq. (12) and (A.6a)
mulkg)* = mip (kq)* + ImPk,g)* + culk,q)

(A.9a)
where

mil(k,g)l* = Jko 2 IMkg)?, i=12  (A9b)

and
cnlk,q) = J dQM iy (kM D(k,q) + c.c. (A.9¢c)

where c.c. denotes the complex conjugate of the
previous term.

Use of Egs. (A.7a) and (A.8) in Egs. (A.9a), (A.9b)
and (A.9¢) yields

4r)?
el =S5 @I (100
4m)?
M (kg = % S gt () (a)
el
X ()nn”ll’l”(q)
@+ D2F + D)2l + 1)<l, a l) (A.10b)
X .
000

47)?
2 ) Y Dk @ity ARYO ety q)
[

Cnl(kaq) = 1%

Il
20+ 1)2F + D2l + 1 ,
x (21 + 1) X )<o 0 0)

(A.10c)

where u, 0, I', are defined in Egs. (19b), (19¢) and
(19d). In deriving Egs. (A.10a), (A.10b) and (A.10c),
use has been made of

f A Y F( Q)Y 1l ) = 010y e (A-11)
and
l/ l// l l/ liv l
z < oo >< [N 1) >
mm \ =W " m/\ —m' m’m
= Oy O 1 + 1) (A.12)

Because of the infinite summations over I'l” in
Eq. (A.10a), it is more useful to evaluate |m{(k,q)*

by expanding e "9 in the term (&% "le ™ "|dpm>
as

ool

e =% ik + glr)dn Z Vi Q)Y (@i rg)
=0 m=—1
rather than expanding e ™" and e~ separately.

The result is the last term in Eq. (19a).

Appendix B.

The expression for |m,(k,g—0)* given by
Egs. (20a) and (20b) is derived. Eq. (10) gives

— i {Pulr|Pnim> (B.T)

where ¢ is given by Eq. (A.1). Because |m,(k ,q)l
given by Eq. (12) involves an average over Qy it is
independent of the direction of g and it is assumed
q is in the z directions so that

mnlm(kaq - 0) =

nlm(k’q - 0 lq<¢k|z|¢n1m> (Bza)
= —igMD + M®), (B.2b)
where
M® <eik"lz4¢ > (B.29)
V1/2 nlm /> .

n'l'm’

eik-r
M(z) = — z <¢)n1ym/|‘m>*<¢n’l'm’|2|¢n1m>'

(B.2d)
Use of Eq. (A.3) for ¢*'" in Eq. (B.2c) yields

4r N A
MO = [Z ”I}T/_z( — iy T,,,n,(k):|¢l'szt'm(Qk)a (B.3a)
v

where
Ty k) = Jdr (k)R (r), (B.3b)
Dy = JdQY?fm(f))Y,m(Q)cos 6. (B.3c)

Use of Eq. (A.3) in Eq. (B.2d) yields

47 .
M® = - |:T/T/~2 ;( — i Z un‘l’(k)Sn’l’,nl—J

Dy Yl’m(Qk)’ (B.4a)

L 88
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where u, (k) is defined in Eq. (19b) and

Sn’l’,nl = J\dr r3Rn’l’(r)Rnl(r) (B4b)

and &, ,, is given by Eq.(B.3c). The quantity

Dy 1 18 nON-zero only for I' =1+ 1,

Py 1m = [+ 17 = m? 1221+ 121 + 312,
(B.5a)

Dy = [12 — m*"3/[21 — 1)21 + 1)]Y2. (B.5b)

Integrating [M ,,(k,q — 0)|? over Q, gives

A 4m)*
fko|Mnlm(k’q - O)|2 = % ‘IZ [A12+ 1,nl(k)¢12+ 1,im
+ APy k) D7 1,lm:|:
(B.6a)
where
A 1ulk) = Tz Ll — Z Unt+ 1Swi+ Lt (B.6b)
Finally,
|mn,l(k9q - 0)|2 = z fdék|Mnlm(ksq - O)I2
B . L |+ 1DQ2I+ 1)
= (4m)7q |: 3 _’“—(21 3 Ay 1K)

+ é A[Z_ 1,nl(k):|- (B7a)
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