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Poloidal impurity asymmetries are frequently observed in tokamaks. In this paper, the effect of

poloidal asymmetry on electrostatic turbulent transport is studied, including the effect of the E� B

drift. Collisions are modeled by a Lorentz operator, and the gyrokinetic equation is solved with a

variational approach. The impurity transport is shown to be sensitive to the magnetic shear

and changes sign for s & 0:5 in the presence of inboard accumulation. The zero-flux impurity

density gradient (peaking factor) is shown to be rather insensitive to collisions in both ion

temperature gradient and trapped electron mode driven cases. Our results suggest that the

asymmetry (both the location of its maximum and its strength) and the magnetic shear are the two

most important parameters that affect the impurity peaking. [http://dx.doi.org/10.1063/1.4719711]

I. INTRODUCTION

The accumulation of impurities in the core of a fusion

plasma has debilitating effect on fusion reactivity due to an

increase in radiation losses and plasma dilution. Significant

effort has been spent finding conditions in which accumula-

tion in the plasma core can be avoided. This includes the

characterization of cross-field impurity transport, which in

recent years has moved towards finding ways to actively

control the concentration of impurities in the core. One of

the ways to influence the impurity transport is to provide

additional central heating which has been shown to give a

flattening effect on the density profiles of impurities in the

core,1–5 for reasons that are still not properly understood.

Recent work noted that the impurity cross-field transport

driven by electrostatic turbulence depends on the poloidal

asymmetry of the impurities,6,7 and this, along with other

effects, may be a contributing factor to the avoidance of

accumulation of impurities with high charge numbers.

Poloidally asymmetric impurity distributions in tokamaks

were studied already in the 1970s (Ref. 8), and their effect on

neoclassical impurity transport has been discussed before.9–12

Today there is a wealth of experimental evidence for poloidal

asymmetries, for an overview of impurity asymmetry meas-

urements organized by experiment see Ref. 13. Asymmetries

can arise due to various reasons, e.g., difference in impurity

source location, toroidal plasma rotation, neoclassical effects,

or radio frequency (RF) heating. In this paper, the emphasis

will be on the effect of RF heating in the plasma core and in

particular the study of inboard accumulation.

One of the first accounts of ion cyclotron resonance

heating (ICRH) driven inboard accumulation of impurities

was given in Ref. 14, where asymmetry in the soft x-ray

emission was observed during the injection of nickel. Also in

the Alcator C-Mod tokamak strong poloidal asymmetries in

molybdenum density are observed in plasmas using ICRH.15

The RF heating scheme applied in both cases is hydrogen

minority heating in a deuterium plasma. The heating gives

rise to a poloidal asymmetry in the density of minority ions,

and this induces an electric field which pushes the impurities

to the inboard side. Although the poloidal electric field

induced by RF is too small to lead to poloidal asymmetries

in the background electron and ion densities, it may influ-

ence the dynamics of impurities with high charge numbers.

The purpose of this paper is to study the effect of the

E� B drift of the impurities in the presence of poloidal

asymmetry and thereby extend previous work on impurity

transport driven by electrostatic turbulence.7 We will show

that a poloidally varying electrostatic potential—arising due

to, e.g., RF heating, parallel friction due to large gradients,

or other effects—can lead to a strong reduction or sign

change of the zero-flux impurity density gradient (impurity

peaking factor). The poloidal variation of the potential has

two fold effect; magnified by the charge of the impurities, it

can lead to a significant impurity asymmetry which, provided

being sufficiently strong, can lead to a sign change in the im-

purity peaking factor in itself as it was shown in Ref. 7. But

more important, the sign change of the impurity peaking fac-

tor can happen at much weaker asymmetry strengths than

was considered in Ref. 7, aided by the E� B drift of impur-

ities in the poloidally varying equilibrium potential. The

peaking factor of highly charged impurities depends mainly

on magnetic shear and the form of the poloidally varying

equilibrium potential (both the location of its maximum and

its strength). It will be shown that the reduction of the peak-

ing factor is specially pronounced in regions of moderate

shear s& 0:5, where even a sign change can occur for

inboard accumulation. Furthermore, in this paper, we model

impurity-impurity collisions by employing a Lorentz

operator and solve the gyrokinetic (GK) equation with a

variational method. Our study concludes, however, that

impurity-impurity collisions will not affect the cross-field

transport of impurities significantly.

The rest of the paper will be organized as follows: In

Sec. II, we formulate the model for calculating the impurity

flux and the peaking factor, including the E� B drift and

collisions (details of the derivation will be given in the

Appendices). In Sec. III, we describe the ICRH induced

asymmetry. Here, a model for the RF heated minority ions is

linked to the asymmetry of impurity ions, and reasonable
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asymmetry strengths that could be caused by ICRH are esti-

mated. Furthermore, we derive an approximate expression

for the peaking factor in the high charge number limit.

Section IV contains the parametric dependences of the peak-

ing factor on charge number, asymmetry, shear, density and

temperature gradients and collisions. Finally, the results are

summarized in Sec. V.

II. IMPURITY FLUX

Impurity cross-field transport is usually dominated by

drift-wave turbulence; consequently, this work is focused on

the effect of poloidally asymmetric impurity distributions on

impurity transport driven by microinstabilities. It is assumed

that the fluctuations responsible for the cross-field transport

do not significantly affect the processes causing the poloidal

asymmetry. The quasilinear impurity flux driven by electro-

static microinstabilities is given by

Cz ¼ �
kh

B
=½n̂z/

�� ¼ � kh

B
=
ð

d3vJ0ðzzÞgz/
�

� �
; (1)

where =½�� denotes the imaginary part, kh is the poloidal

wave-number, n̂z is the perturbed impurity density, gz is the

non-adiabatic part of the perturbed impurity distribution

function, J0 is the Bessel function of the first kind, zz ¼
k?v?=xcz;xcz ¼ ZeB=mz is the cyclotron frequency, and

k? ¼ ð1þ s2h2Þ1=2kh. Furthermore, mz and Z are the impu-

rity mass and charge number, respectively, /� is the complex

conjugate of the perturbed electrostatic potential, and B is

the strength of the equilibrium magnetic field. The subscripts

k and \ denote the parallel and perpendicular directions with

respect to the magnetic field.

In this work, we will order the equilibrium electrostatic

potential so that e/E=Tj � 1, where Tj is the temperature of

species j. Thus, the main ion and electron distributions are

poloidally symmetric, but we allow for high enough charge

numbers of the impurities so that Ze/E=Tz ¼ Oð1Þ. For sim-

plicity, we consider an axisymmetric, large aspect-ratio torus

with circular magnetic surfaces. h and r denote the poloidal

and radial coordinates, respectively. The non-adiabatic part

of the perturbed distribution function gz can be obtained

from the linearized GK equation

vk
qR

@gz

@#
� iðx� xDz � xEÞgz � CðgzÞ

¼ �i
Zef z0

Tz
ðx� xT

�zÞ/J0ðzzÞ; (2)

where # is the extended poloidal angle, x ¼ xr þ ic is the

mode frequency, fz0 ¼ nz0ðmz=2pTzÞ3=2
expð�E=TzÞ is the

equilibrium Maxwellian distribution function, E ¼ mzv2=2

þZe/E is the total energy, nzðrÞ ¼ nz0 exp½�Ze/EðrÞ= Tz� is
the poloidally varying impurity density, and nz0 is a flux

function. The diamagnetic frequency is defined as x�z ¼
�khTz=ZeBLnz and xT

�z ¼ x�z½1� LnzZe@/E=@r=Tz þ ðE=Tz

�Ze/E=Tz �3=2ÞLnz=LTz�, with Lnz ¼ �½@ðln nzÞ=@r��1
and

LTz ¼ �½@ðln TzÞ=@r��1
being the density and temperature

scale lengths, respectively, and l ¼ mzv2
?=ð2BÞ is the

magnetic moment. The magnetic drift frequency is

xDz ¼ �2khðE � Ze/E � lB=2ÞDð#Þ=ðmzxczRÞ, where Dð#Þ
¼ cos#þ s# sin#, q is the safety factor and s ¼ ðr=qÞðdq=drÞ
is the magnetic shear. The quantity xE stems from the E� B

drift of the particles in the equilibrium electrostatic field and has

the form (see Appendix A)

xE ¼
kh

B

@/E

@r
� s#

r

@/E

@#

� �
: (3)

Henceforth, rotation will be neglected and we put

@/E=@r ¼ 0 in Eq. (3) and in xT
�z and write Eh � Bu when

we refer to the E� B drift in the poloidally varying electric

field. Also in the following, the parallel dynamics and the

trapping of impurities due to rkB and rk/E are neglected

and, for simplicity, also finite Larmor-radius (FLR) effects

are omitted ½J0ðzzÞ ¼ 1 is taken in Eqs. (1) and (2)]; these

assumptions are justified for heavy impurities with low ther-

mal velocity if mz / Z. Accordingly, the equation we need

to solve is

�iðx� xDz � xEÞgz � CðgzÞ ¼ �i
Zef z0

Tz
ðx� xT

�zÞ/: (4)

If nzZ
2=ne is of order unity or larger, the impurity-

impurity collisions dominate over collisions between

impurities and other species, even if the collision frequen-

cies with the other species can be formally comparable to

the impurity-impurity collision frequency. The reason for

this can be seen from, e.g., Eq. (41) in chap. 5.2 of Ref. 16,

where all factors in the collision time are the same for zi
and zz collision times except vt> in the numerator. Here, vt>

is the largest of the two thermal speeds. This leads to

szz=szi ¼ vtz=vti � 1 if Z � 1. Therefore, it is sufficient to

consider only the impurity self-collisions which can be

modeled by a pitch angle scattering operator and a term to

restore momentum conservation. Since the motion of

impurities is slow compared to other species, momentum

conservation is not expected to affect the results on turbu-

lence time scales. Thus, we model impurity collisions with

the Lorentz operator

CðgzÞ ¼
�DðxÞ

2
LðgzÞ 	

�DðxÞ
2

@

@n
ð1� n2Þ @gz

@n

� �
; (5)

where �D is the deflection frequency for self-collisions

�DðxÞ ¼ �̂ zz½ErfðxÞ � GðxÞ�=x3, x ¼ v=vTz represents velocity

normalized to the thermal speed vTz ¼ ð2Tz=mzÞ1=2
, �̂ zz ¼

nzZ
4e4 ln K= ½4p�2

0m1=2
z ð2TzÞ3=2�, and ln K is the Coulomb

logarithm. ErfðxÞ is the error-function, and GðxÞ ¼ ½ErfðxÞ
�xErf0ðxÞ�=ð2x2Þ the Chandrasekhar function. In the Lorentz

operator, n ¼ xk=x denotes the cosine of the pitch-angle.

The Lorentz operator makes the distribution more iso-

tropic in velocity space in a diffusive way. The only anisot-

ropy in Eq. (4) is in the magnetic drift term since it is

proportional to E � Ze/E � lB=2 ¼ Tzðx2
k þ x2

?=2Þ. In the

constant energy resonance (CER) approximation

[v2
? þ 2v2

k ! 4ðv2
? þ v2

kÞ=3], Eq. (4) would be isotropic and

pitch-angle scattering would have no effect at all. It should
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be noted, however, that in the full linear GK equation (2),

both the parallel compressibility and the Bessel function rep-

resenting FLR-effects introduce some anisotropy; however,

these terms can be neglected for heavy impurities as men-

tioned above. The anisotropy from the magnetic drifts can be

written in terms of Legendre polynomials PlðnÞ, that are

the eigenfunctions of the operator L, as xDz ¼ ½2P0ðnÞ
þP2ðnÞ�xDx=3, where xDx ¼ �khv2

Tzx
2ðcos#þ s# sin#Þ=

ðxcz RÞ. Using this form, an approximate variational solution

of the GK equation including collisions modeled by a

Lorentz operator can be derived as a truncated Legendre

polynomial series; the details of this calculation are given in

Appendix B. In Sec. II A, we use the variational solution

given in Eq. (5) to calculate the peaking factor.

A. Zero-flux impurity density gradient

Using the formula for the quasilinear particle flux for

impurities, Eq. (1), the normalized zero-flux impurity density

gradient a=L0
nz can be obtained from the requirement that the

flux surface average of the particle flux vanishes hCzi ¼ 0,

where h�i ¼ ð1=2pÞ
Ð p
�pð�Þ dh. Here, a is the outermost minor

radius. We neglect the contribution from the part of the poten-

tial that is outside the extended angle interval ½�p; p�, which

means that our expression is not valid in cases where the bal-

looning eigenfunction is very elongated. We perform the inte-

gration over velocity space using the energy and magnetic

moment normalized to temperature, ~E ¼ E=Tz and ~l ¼ l=Tz,

as velocity space coordinates. Accordingly, we have

ð
d3v¼pv3

Tz

ð1
Ze/E=Tz

d~E
ðð~E�Ze/E=TzÞ=B

0

d~l
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~E � ~lB�Ze/E=Tz

q ;

and the peaking factor can be written as

a

L0
nz

¼ PT

Pn
; (6)

where

PT ¼
*
<
" ð

d~E
ð

d~l
expð�~EÞj/j2AðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E � ~lB� Ze/E=Tz

q

�
(

�x � �x�z ~E � Ze/E

Tz
� 3

2

� �
a

LTz

)#+
;

Pn ¼
*
<
" ð

d~E
ð

d~l
expð�~EÞj/j2AðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E � ~lB� Ze/E=Tz

q �x�z

#+
;

and <½�� denotes real part. In the integrals above, ~E is inte-

grated over ½Ze/E=Tz;1� and ~l over ½0; ð~E � Ze/E=TzÞ=B�.
Furthermore, we introduced

AðxÞ ¼ 5½7 �F0ðxÞ þ 2 �F2ðxÞ þ 21��DðxÞ�
35 �F

2
0ðxÞ þ 10 �F0ðxÞ �F2ðxÞ � 7 �F

2
2ðxÞ þ 105 �F0ðxÞ��DðxÞ

;

(7)

where �F0ðxÞ¼�ið�x�2�xD0x2=3� �xEÞ, �F2ðxÞ¼ i�xD0x2=3.

The bar signifies that the parameter is given in cs=a units,

where cs¼ðTe=miÞ1=2
is the ion sound speed. �x¼ ax=cs is

the normalized wave frequency, �x�z¼�khqs0ð1þ �cos#Þ=
ðZszÞ is the normalized diamagnetic frequency, �xD0¼
�2khqs0aðcos# þs#sin#Þ= ðR0ZszÞ is the normalized drift

frequency, and

�xE ¼ �
a

r
s#

Ze

Tz

@/E

@#

khqs0

Zsz
ð1þ � cos#Þ

is the normalized Eh � Bu drift frequency, with sz ¼ Te=Tz.

qs0 denotes the ion sound Larmor radius qs ¼ cs=xci at R0

and � ¼ r0=R0 is the inverse aspect ratio, where r0 is the

local reference minor radius and R0 is the major radius of the

magnetic axis. The equation for the velocity dependent AðxÞ
factor (7) comes from A1ðx; nÞ=A2ðxÞ appearing in Eq. (B5)

in Appendix B, after dropping the P2ðnÞ term in A1 that van-

ishes upon velocity integration.

The normalized deflection frequency is ��DðxÞ ¼
ðnz=niÞZ4s2

z ��eiðme=mzÞ1=2 ½ErfðxÞ � GðxÞ�=x3. Expressed in
~E and ~l variables, the normalized speed is x ¼ ð~E
�Ze/E=TzÞ1=2

, and the cosine of the pitch angle is

n ¼ ½1� ~lB=ð~E � Ze/E=TzÞ�1=2
.

III. MODEL FOR THE POLOIDAL ASYMMETRY

We assume that the plasma consists of electrons (e),

deuterium ions (i), impurity ions (z), and RF heated hydrogen

minority ions (H). The equilibrium distribution of each

particle species (a) except the minority ions can be expected

to be a Boltzmann distribution (the dynamics of the minority

ions is strongly affected by the RF heating): na ¼ na0

expð�ea/E=TaÞ 
 na0ð1� ea/E=TaÞ; where ea is the charge,

Ta is the temperature of the species (approximately constant

on a flux surface), and /E is the equilibrium potential. The

subscript zero indicates the density where the equilibrium

potential vanishes. Here, in order to get a simple approximate

expression for the poloidally varying potential, we assume

that the linear expansion in Ze/E=Tz of the Boltzmann distrib-

uted impurities is valid (while in other parts of the paper we

allow this parameter to be order unity); this is a reasonable

approximation for experimentally relevant values of Ze/E=Tz.

This implies that the poloidal variation of the density on a

flux surface ~na ¼ na � na0 is given by ~na=na0 ’ �ea/E=Ta.

Assuming that the poloidal variation in the potential /E is

produced by the poloidally asymmetric distribution of the

heated minority ions, from quasineutrality, we can derive an

expression for the impurity density on a flux surface

nz

nz0

¼ exp � Ze/E

Tz

� �

¼ exp � Zn̂H=ne0

ðTz=TiÞðni0=ne0Þ þ ðTz=TeÞ þ ðnz0Z2=ne0Þ

� �
;

(8)

where n̂H represents the fraction of the hydrogen minority

density which feels the ICRH resonance and does not follow

a Boltzmann distribution. Here, /E is normalized so that
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ni0 þ nH0 þ Znz0 � ne0 ¼ 0. The poloidal variation enters

through n̂H ¼ n̂HðhÞ. Since the exponent in Eq. (8) is nega-

tive, a maximum in n̂H corresponds to a minimum in nz;

hence, accumulation of minority ions on the outboard side

gives rise to an electric field that pushes the impurities to the

inboard side.

The minority density becomes poloidally asymmetric if

ICRH is applied. Equation (8) shows that one of the most im-

portant factors affecting the poloidally asymmetric impurity

accumulation is the fraction of the minority density. We can

obtain a simple estimate for this by using the ansatz for the

distribution function of minority ions heated by ICRH given

in Ref. 17,

fHðE; lÞ ¼
mH

2p

� �3=2 ncðrÞ
T?ðrÞT1=2

jj ðrÞ
exp � lBc

T?ðrÞ
� jE � lBcj

TjjðrÞ

� �
:

(9)

Here, mH is the mass of the hydrogen minority ions, Bc is

the ICRH resonant magnetic field strength, and nc is the mi-

nority density along the ICRH resonance layer. Since ICRH

causes minority ion acceleration dominantly across the

magnetic field, the effective minority perpendicular temper-

ature at the resonance region is usually much higher than

the parallel one. From Eq. (9), it can be shown that if the

resonance layer is at the low field side and does not inter-

sect the studied flux surface, the poloidal variation of the

potential is expected to be sinusoidal to first order. The

asymmetry strength depends on bc ¼ Bc=B0 (here, B0 is

the magnetic field at the magnetic axis), minority tempera-

ture anisotropy aT ¼ T?=Tjj, and minority concentration

nH0=ne (Ref. 18), as

nHðhÞ 
 nH0ð1þ k cos hÞ; k ¼ � bcðaT � 1Þ
bc þ aTð1� bcÞ

: (10)

Being related to the hydrogen minority concentration, the

poloidal variation of the potential causes impurities to be

asymmetrically distributed over the flux surface. As follows

from Eq. (10), this asymmetry is strengthened by high mi-

nority temperature anisotropy. We note that if the resonance

layer intersects the studied flux surface then the poloidal dis-

tribution of the minorities cannot be well modeled with a

simple sinusoidal approximation. Also when the resonance

layer is at the high magnetic field side of the flux surface,

this simple model is not accurate, and in these cases,

Eq. (10) is not valid.

The electrostatic potential depends on various compet-

ing effects and is in general difficult to determine (or mea-

sure). Since in the present work we concentrate on the

effects of the poloidal variation of /E, as earlier mentioned

we ignore its radial variation, that is, we neglect toroidal

rotation. We also assume that its poloidal dependence is

approximately sinusoidal (as shown above in the case of

ICRH driven asymmetries). This motivates the following

ansatz for the equilibrium potential

Ze/E=Tz ¼ �j cosðh� dÞ; (11)

where d represents the angular position where the impurity

density has its maximum and j sets the strength of the poloi-

dal asymmetry. Thus, the impurity density will be assumed to

vary according to nzðh; rÞ ¼ nz0ðrÞ exp½j cosðh� dÞ�. In the

model for ICRH driven asymmetries presented above, d ¼ p
is obtained. Although electron cyclotron resonance heating

(ECRH) is not quantitatively described by this model, we

might expect that it will result in an outboard accumulation of

impurities, corresponding to d ¼ 0 (this possibility is men-

tioned in Ref. 13, although we are not aware of a detailed the-

oretical study on the topic). Accordingly, we will in our

analysis present results with both d ¼ 0 and d ¼ p.

By comparing Eqs. (8) and (11) in the limit nz0Z2=ne0

� 1, it can be noted that the asymmetry strength is propor-

tional to the impurity charge and the minority concentration,

j / Zn̂H. Figure 1(a) shows the asymmetry strength calcu-

lated from

j ¼ ZðnH0=ne0Þk
ðTz=TiÞðni0=ne0Þ þ ðTz=TeÞ þ ðnz0Z2=ne0Þ

(12)

as a function of the minority temperature anisotropy aT for

various impurity species. Here, we assumed nH0 � ni0. The

asymmetry strength increases with impurity charge and mi-

nority temperature anisotropy. For ICRH powers of the order

of 3 MW temperature anisotropies up to about aT ¼ 8 can be

expected.17 Higher ICRH power leads to higher temperature

anisotropies, but also other parameters matter (such as

antenna phasing, background densities and temperatures,

radius, etc). Equation (12) suggests that the asymmetry

strength is proportional to the minority fraction, but it should

be noted that the minority fraction affects the minority tem-

perature anisotropy as well. Too high minority fraction will

change the mode of heating (from ion to electron heating).

The anisotropy of the distribution function is reduced with

minority concentration, since the deposited energy per parti-

cle is reduced. To get the same level of anisotropy with

higher minority concentration, higher ICRH power is

needed. Note that in case of small impurity fraction (so that

Z2nz0=ne0 can be dropped in the denominator of Eq. (12)),

the asymmetry strength j is larger. Figure 1(b) shows how

the impurity density varies with poloidal angle for different

values of the strength.

In the following, we will refer to “in-out” and “out-in”

asymmetries as the situations when the maximum of the

poloidally varying impurity density is located at the high-

field and low-field sides of the plasma, respectively.

Note that the poloidal distribution of impurities corre-

sponding to the potential given in Eq. (11) is different from

the ansatz used in Ref. 7. The choice of Eq. (11) is conven-

ient because this way the modeling of weak asymmetries

(j < 1) is more straightforward. In Refs. 6 and 7, the poloi-

dal asymmetry of the impurity density was modeled by the

ansatz nz ¼ nz0PðhÞ ¼ nz0

P
n fnPðh; d; nÞ, where Pðh; d; nÞ

¼ cos2 h�d
2

	 
� �n
, with n representing the peakedness of the

asymmetry (note that the asymmetry strength j used in this

paper is not equivalent with n) and the weights fn could be

chosen to represent populations of impurities with various

degrees of peakedness. The ansatz used here with j ¼ 0:5
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would correspond to f0 ¼ 1; f1 ¼ 2, and j ¼ 0:2 corresponds

to f0 ¼ 1; f1 ¼ 0:5 (the rest of fj is equal to zero). In Ref. 7,

mostly n¼ 3 (f3 ¼ 1, fj 6¼3 ¼ 0) was used to demonstrate the

effect of the poloidally asymmetric impurity distribution,

since rather strong asymmetry strength was necessary to get

a sign change of the peaking factor without including the

Eh � Bu drift.

A. Approximate analytical solution for the peaking
factor

If collisions are neglected one can construct an approxi-

mate analytical solution for the peaking factor by solving the

integral in the expression for the perturbed impurity density

analytically. This can be done if we employ the CER approx-

imation in the expression for the magnetic drift so that we

have

n̂z ¼
Ze/nz

Tz
�1þ

ð
4px2

z dxz
e�x2

z

p3=2

x� xT
�z

x� xE � x2
z x̂Dz

 !
;

where x̂Dz ¼ xDz0Dð#Þ, with xDz0 ¼ �2khv2
Tz=3xczR. To

simplify the velocity integral, we can expand the integrand

in the smallness of 1/Z, noting that x̂Dz;xT
�z / 1=Z, to obtain

n̂z ¼
Ze/nz

Tz

1

x� xE
xE � x�z þ

3x̂Dz

2
þ 3xEx̂Dz

2ðx� xEÞ

� �
:

(13)

In general, the last two terms in the bracket in Eq. (13) can

be of the same order of magnitude, since xE can be as large

as jxj and written in the form of Eq. (3), xE is seemingly in-

dependent of Z. However, when the nz0Z2=ne0 term in the

denominator in Eq. (8) is not negligibly small, Ze/E=Tz can

be roughly constant for different values of Z. Keeping for-

mally Ze/E=Tz constant leads to xE � 1=Z. This means that

the last term in Eq. (13) is 1=Z2 small, and it can be

neglected. In the following, we will adopt this approxima-

tion in order to arrive to a simple expression for the peaking

factor.

Inserting the expressions for the drift and diamagnetic

frequencies and using Eq. (1), it can be shown that the

expression for the zero-flux impurity density gradient is

a

L0
nz

¼ 2
a

R
hDi/ þ sj

a

r
hh sinðh� dÞi/; (14)

where we introduced h…i/ ¼ h…N j/j
2=½ðxr � xEÞ2 þ

c2�i=hN j/j2=½ðxr � xEÞ2 þ c2�i ’ h…N j/j2i=hN j/j2i and

NðhÞ ¼ exp½j cosðh� dÞ�. The second term in Eq. (14)

stems from the Eh � Bu drift, and it will be shown in Sec. IV

that it is negative for inboard accumulation. Also the first

term, containing hDi/ (representing the curvature drift) is

reduced for inboard accumulation, as it was pointed out in

Refs. 6 and 7, but the reduction due to the second term is

much larger, specially for moderate or large values of mag-

netic shear.

At this point, it is easy to demonstrate that including a

non-zero @/E=@r would not change the impurity peaking

significantly. By shifting the real part of the mode frequency

in Eq. (2), as xr � ðkh=BÞð@/E=@rÞ ! xr, the gyrokinetic

equation remains formally the same, as in the @/E=@r ¼ 0

case, except that xr is different. In the large Z limit, consid-

ered above, xr appears only in the weighting factor of the

h…i/ average in Eq. (14), but not explicitly in the expression

of the impurity peaking factor, thus it plays only a minor

role; and accordingly, the effect of @/E=@r is small. This

was verified numerically, including non-zero @/E=@r of dif-

ferent magnitudes in peaking factor calculations, yielding

practically the same results as with @/E=@r ¼ 0. However, it

is important, that the radial electrostatic field corresponds to

a toroidal rotation which, in turn, can contribute to the poloi-

dal redistribution of heavy impurities due to centrifugal

effects. Including finite Mach-number effects would require

a significantly more complicated formalism that is out of the

scope of the present work.

IV. PARAMETRIC DEPENDENCES OF THE PEAKING
FACTOR

In the simulations, the following local profile and mag-

netic geometry parameters were used: r/a¼ 0.3, R/a¼ 3,

FIG. 1. (a) Asymmetry strength j as a function of minority temperature anisotropy aT for carbon (Z¼ 6), argon (Z¼ 18), and nickel (Z¼ 28)

with nH0=ne0 ¼ 0:07; nz0=ne0 ¼ 2� 10�3; bc ¼ 0:91;Ti ¼ Tz ¼ 0:85 Te, and � ¼ 0:1. (b) Normalized poloidal impurity density variation for j ¼ 0;j ¼ 0:2
and j ¼ 0:5 with d ¼ p.
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khqs ¼ 0:3, q¼ 1.7, a=Lne ¼ 1:5; Ti=Te ¼ 0:85; a=LTe ¼ 2;
a=LTi ¼ 2:5, s¼ 0.22, qs=a ¼ 0:0035, and �̂ ei ¼ 0:0058 cs=a
(collision frequency corresponding to Te ¼ 7 keV; ni ¼ 3

�1019 m�3; ln K ¼ 17, and a ¼ 1 m). These parameters are

similar to the ones used in Ref. 7, which will ease the compar-

ison with those results. Nickel (Z¼ 28) impurity was assumed

to be present in trace quantities, in the sense that Znz=ne � 1

(nz=ne ¼ 2� 10�3 in the simulations). However, note that

Z2nz=ne � 1, which implies that the strength of the poloidal

asymmetry j in Eq. (11) does not increase linearly with impu-

rity charge Z. The temperatures and temperature gradients

were assumed to be equal for the impurities and the main

ions, Tz=Te ¼ Ti=Te and a=LTz ¼ a=LTi. This is the baseline

case in our study, and these parameters are used unless other-

wise stated.

The perturbed electrostatic potential and eigenvalues

were obtained by linear electrostatic gyrokinetic initial-value

calculations with GYRO,19 and it is assumed that they are

unaffected by the presence of a weak poloidal variation of

the electrostatic potential and the poloidally asymmetrically

distributed trace impurity species. Linear initial-value stud-

ies only consider the most unstable mode and any sub-

dominant modes are neglected. The main ion and electron

densities are assumed to be approximately poloidally sym-

metric, which is important for the validity of the model. In

the simulations, we use a model Grad-Shafranov magnetic

equilibrium, where the Oð�Þ corrections to the drift frequen-

cies are retained. Flux-tube (periodic) boundary conditions

were used, with a 128 point velocity space grid (8 energies,

8 pitch angles, and two signs of velocity), the number of ra-

dial grid points is 6, and the number of poloidal grid points

along particle orbits is 20 for trapped particles. The location

of the highest energy grid point is at miv2=ð2TiÞ ¼ 6. The

ions were taken to be gyrokinetic and the electrons to be drift

kinetic with the mass ratio ðmi=meÞ1=2 ¼ 60.

A. Impurity species dependence

Figure 2 shows how the peaking factor varies for differ-

ent impurity species with different charges. The model

assumes moderate to high-Z impurities and accordingly

Arþ18;Niþ28;Moþ32, and Wþ40 were used, also because

these impurities are present in existing experiments.1–5,15 It

is clear that the peaking factor is not sensitive to the charge

number, neither in the symmetric nor in the asymmetric

cases. This is in agreement with what has earlier been

observed in both gyrokinetic and fluid simulations of trans-

port dominated by ion temperature gradient (ITG) turbu-

lence.20 From Fig. 2, it is also evident that outboard impurity

accumulation leads to an increase of the peaking factor with

respect to the symmetric case, while in-out asymmetry leads

to a substantial decrease. Furthermore, it is clear that a stron-

ger asymmetry results in a larger shift in the peaking factor.

Note that, from Eqs. (8) and (11), the strength of the poloidal

asymmetry is expected to depend on the impurity charge and

in the limit Z2nz=ne � 1 increase linearly with Z. However,

this condition is not fulfilled in our baseline case (for

instance, we have Z2nz=ne ’ 1:6 for nickel). In this case, it

can be shown that the asymmetry strength is almost the same

for Arþ18, Niþ28;Moþ32, and Wþ40, and our assumptions

leading to the approximate expression for the peaking factor

given in Eq. (14) are valid. As it is clear from Eq. (14), if we

can treat the asymmetry strength j as a parameter independ-

ent of Z, the impurity peaking factor will also be independent

of Z to leading order because the 1=Z dependences of

x�z; x̂Dz and xE cancel. We note that this reasoning would

break down for Z2nz=ne � 1 when, for high Z, the GK equa-

tion and, accordingly, the impurity peaking factor would be

dominated by the Z-independent xE.

B. Asymmetry dependence

From now on, we concentrate on the peaking factor for

nickel (Z¼ 28), which has previously been studied in Ref. 7

and was also one of the main impurities studied in Ref. 1. In

Fig. 3, it is shown how the peaking factor for nickel varies

with asymmetry strength j for both out-in and in-out asym-

metries. From the previous results of Refs. 6 and 7 (valid in

the limit of negligible xE), we expect that an inboard asym-

metry leads to a reduction of the peaking factor, and this is

indeed the case as Fig. 3 shows. It is interesting to note that

for the weak asymmetry used here the presence of xE is cru-

cial to obtain a sizable reduction. For comparison, in Fig. 3,

the xE ¼ 0 case is shown with dotted line, and it is clear that

if the Eh � Bu drift is neglected, the peaking factor is almost

unaffected by the poloidal asymmetry up to j ’ 1. This is in

agreement with the results of Ref. 7, where much larger

asymmetry strengths were used to obtain a reduction for the

peaking factor.

Figure 3 suggests that an in-out asymmetry leads to a

decrease in peaking factor while an out-in asymmetry will

increase it. It is also clear that the change in the peaking fac-

tor, irrespective of if it is an increase or decrease, is greater

the higher the asymmetry strength.

C. Shear dependence

As we have seen in Sec. IV B, a sign-change in the

peaking factor (for low shear, as we assumed in our baseline

FIG. 2. Peaking factor as a function of impurity charge for different values

of peaking angle d and asymmetry strength j. The red solid line represents

the case of poloidally symmetric impurity distribution, and the diamonds

represent GYRO values. j ¼ 0:2—out-in asymmetry (blue, wide dash-dotted

line), j ¼ 0:5—out-in asymmetry (yellow, dash-dotted line), j ¼ 0:2—in-

out asymmetry (green, dashed line), j ¼ 0:5—in-out asymmetry (black, dot-

ted line). Arþ18;Niþ28;Moþ32, and Wþ40 were used as ion species.
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parameters) would require a much larger level of asymmetry

than what could be explained by ICRH driven impurity

asymmetry, where j . 0:5 even for high Z and large tem-

perature anisotropies. However, the asymmetry in the moder-

ate shear region is one of the most important factors leading

to a large change in the peaking factor, which (as we will see

later) is quite insensitive to other plasma parameters.

Figure 4(a) shows that the peaking factor is very sensi-

tive to the shear. The main reason for the shear-dependence

is the Eh � Bu drift term. This fact is also evident from the

approximate analytical expression for the peaking factor Eq.

(14), where the shear-dependence is explicit in the term that

stems from xE. For j ¼ 0:5 and s¼ 1, even a sign-change

occurs. The behavior is very different from the symmetric

case, where the peaking factor is expected to increase with

shear. The reduction of the peaking factor occurs only in the

case of inboard accumulation (for positive shear). In the case

of out-in asymmetry, instead a large increase in the peaking

factor is expected. In Fig. 4(a), we also plot the approximate

peaking factors corresponding to Eq. (14) with dotted curves,

demonstrating that this simple formula reproduces the shear

dependence remarkably well.

Figure 4(b) shows the shear-dependence of the eigenval-

ues. The real frequency is significantly reduced for low or

negative shear. Also, the imaginary part of the perturbed

potential is quite sensitive to the shear. However, the shear-

dependence of the imaginary part of the perturbed potential

and the real part of the eigenfrequency are not enough to

influence the peaking factor significantly, since the sensitiv-

ity to the shear is not observed without the xE term.

The curves for the peaking factor for various asymme-

tries cross very close to s¼ 0 (see Fig. 4(a)), which can be

explained by the fact that for s¼ 0 the Eh � Bu drift-term

xE ¼ 0 and the main reason for the change in the peaking

factor disappears. Note, that in the case of negative shear,

the behavior is opposite to that of positive shear. Then,

inboard asymmetries lead to larger peaking factors. This is

due to the fact that xE changes sign for negative shear.

Previous work investigating the effect of poloidal

asymmetries on impurity transport6,7 did not include the

Eh � Bu drift term. In the limit of xE ¼ 0 and no collisions,

our model reproduces the results of Ref. 7. Our present

results, however, suggest that the Eh � Bu drift frequency is

in fact the main reason why a poloidal asymmetry can result

in a reduction of the impurity peaking factor. To understand

why these results are seemingly different from the results of

Ref. 7, it should be noted that the poloidal asymmetry is

introduced differently in the two models, as mentioned at

the end of Sec. III. In Ref. 7, the significant reduction of the

peaking factor was observed for much larger asymmetry

strengths n & 2:5. The maximum asymmetry strength used

here j ¼ 0:5 corresponds to the sum of two terms: n¼ 0

with weight f0 ¼ 1 and n¼ 1 with f1 ¼ 2. Then the total

peaking factor can be estimated to be

a

L0
nz

’ f0
f0 þ f1

a

Lnz0

þ f1

f0 þ f1

a

Lnz1

;

where a=Lnz0 is the peaking factor corresponding to the

poloidally symmetric part (n¼ 0, with weight f0), and a=Lnz1

FIG. 3. Peaking factor for nickel as a function of asymmetry strength j with

out-in asymmetry (red, solid line) and in-out asymmetry (black, dash-dotted

line). The gray dotted curve represents in-out asymmetry with xE neglected,

comparing this curve to the corresponding curve with xE included (black,

dash-dotted line) illustrates the impact which the Eh � Bu drift has on the

peaking factor.

FIG. 4. (a) Peaking factor for nickel as a function of shear s for different values of peaking angle d and asymmetry strength j ¼ 0:5. Symmetric impurity den-

sity (red line), out-in asymmetry (blue line), and in-out asymmetry (black line). Diamonds correspond to GYRO results. The figure also shows a comparison

between the numerical solution in Eq. (6) (Num.) represented by solid lines and the analytical approximation in Eq. (14) (Approx.) represented by dotted lines.

(b) Real and imaginary parts of x ¼ xr þ ic as functions of shear s. Red line (with circle markers) represents the real part, and blue dash-dotted line (square

markers) represents the imaginary part of the eigenvalues. Frequencies are normalized to cs=a.
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is the peaking factor corresponding to the poloidally asym-

metric part (n¼ 1, with weight f1). The peaking factor in this

case would then be a=L0
nz ’ ð1=3Þða=Lnz0Þ þ ð2=3Þða=Lnz1Þ.

The term with n¼ 1 gives a slight reduction of the peaking

factor, but the total peaking factor is almost unaffected.

From Eq. (14), we can also see that the temperature and

density gradients of the electrons and main ions neither

affect the impurity peaking directly nor through the mode

frequencies and growth rates to leading order in 1/Z. The

effect of these gradients appear mainly through the form of

the ballooning eigenfunction (and through higher order terms

in 1/Z), and it is rather weak as it is illustrated in Fig. 5.

D. Effect of collisions

In the baseline case of our study, the turbulence is ITG

mode dominated (the real part of the mode frequency xr ¼
�0:053cs=a is negative). For ITG mode dominated plasmas,

the collisionality is expected to have a small impact on the

transport.21 This is shown in Fig. 6, where both mode

FIG. 5. Peaking factor for nickel as a function of ion temperature gradient a=LTi with s ¼ 0:22 (a) (the baseline case) and s¼ 1 (b), electron temperature gradi-

ent a=LTe (c) and electron density gradient a=Lne (d) for different values of peaking angle d and asymmetry strength j ¼ 0:5. Symmetric impurity density (red,

solid line), out-in asymmetry (blue, dashed line), and in-out asymmetry (black, dotted line). Diamonds correspond to GYRO results.

FIG. 6. (a) Real and imaginary parts of x ¼ xr þ ic as functions of electron-ion collision frequency �̂ ei. Red line (with circle markers) represents the real

part, and blue dash-dotted line (square markers) represents the imaginary part of the eigenvalues. Frequencies are normalized to cs=a, and the baseline case is

�̂ ei ¼ 0:0058 cs=a. (b) Peaking factor for nickel as a function of electron-ion collision frequency �̂ ei for different values of peaking angle d and asymmetry

strength j ¼ 0:5. Symmetric impurity density (red, solid line), out-in asymmetry (blue, dashed line), and in-out asymmetry (black, dotted line). Diamonds cor-

respond to GYRO results.
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frequency and impurity peaking factor are almost unaffected

by a change in electron-ion collision frequency. The poloidally

asymmetric cases are also only weakly affected by a change in

collisionality; hence, neglecting the collision operator in the

GK equation (Eq. (4)) would be an approximation which

would not induce a significant error in this particular study.

To see why the impurity peaking is rather insensitive

to collisions, we consider two limits of Eq. (7). In the colli-

sionless limit, it reduces to A ¼ ð35 �F0 þ 10 �F2Þ=ð35 �F
2
0

þ10 �F0
�F2 �7 �F

2
2Þ. After substituting, the definitions of �F0

and �F2 into this expression we can expand in �xD0 to first

order (that is relevant for high Z) to find the approximate

expression

A 
 i

�x � �xE
1þ 2�xD0x2

3ð�x � �xEÞ

� �
: (15)

Interestingly, in the opposite limit (��D !1) when

A 
 1= �F0, a similar expansion in �xD0 leads to the same

result as Eq. (15). This means that the collisions can only

affect the impurity peaking through their effect on the mode

frequencies and mode structure, or through terms that are

higher order in �xD0 / 1=Z.

By changing the ion and impurity temperature gradients

to a=LTi ¼ a=LTz ¼ 1:0 in the baseline case, a TEM (trapped

electron mode) dominated plasma is obtained. Figure 7

shows how the eigenvalues and the impurity peaking factor

for this plasma depend on collision frequency. As expected

in a TEM dominated plasma, an increase in collisionality

leads to a suppression of instabilities seen from the reduction

of the growth rate c. Compared to the ITG mode dominated

plasma, the peaking factor is more affected by collisionality

in the TEM case even though the dependence is still rather

weak (compare Fig. 7(b) with Fig. 6(b)). The reason for this

is that the mode frequency, in particular the growth rate, is

more influenced by a change in collision frequency for the

TEM case than for the ITG case. Consequently, the peaking

factor is rather affected indirectly by a change in collision

frequency through the change in mode frequency, than

directly by the change in collision frequency itself.

V. DISCUSSION AND CONCLUSIONS

We have studied the effect of the Eh � Bu-drift and col-

lisions on high-Z trace impurity transport driven by electro-

static turbulence in the presence of poloidal asymmetries.

For simplicity, we have used a large aspect ratio, circular

cross section equilibrium, and neglected impurity parallel

motion, electrostatic trapping, and FLR-effects (which are

good approximations for heavy impurities). We assumed that

impurity self-collisions dominate and modeled the collisions

with a Lorentz operator.

The main result of the paper is that—as soon as there is

a poloidally asymmetric equilibrium electrostatic potential

/E in tokamaks so that Ze/E=Tz is order unity—the asym-

metry and shear are the two most important parameters that

govern the peaking of moderate and high-Z impurities. The

shear dependence of the impurity peaking is mainly due to

the Eh � Bu drift term in the gyrokinetic equation. For mod-

erate shear, the peaking factor is substantially reduced and

changes sign for inboard accumulation. The other plasma pa-

rameters, such as collisionality, ion and electron temperature

gradients and electron density gradient do not influence the

peaking factor significantly. Experimentally the presented

results could be most easily checked by magnetic shear scans

in discharges with low field side ICRH heating.

Although in the present paper only the ICRH generated

poloidal potential variation was discussed in more detail, the

formalism presented is valid for any situation when there is a

poloidal electric field causing a poloidally asymmetric impu-

rity distribution. From the reasoning of Sec. III, it is expected

that ECRH causes a temperature anisotropy in the electron

distribution, increasing the trapped electron population close

to the resonant layer. If the resonant layer is in the high field

side, it sets up a potential that leads to an inboard impurity

accumulation and decreasing impurity peaking. For low field

side ECRH heating, the opposite effect is expected. Experi-

mental measurement of impurity asymmetries and peaking,

depending on the location of the resonant layer in both ion

and electron cyclotron heated plasmas would be an important

step towards the understanding of impurity transport in RF

heated plasmas.

FIG. 7. Collisionality dependence for a TEM dominated plasma obtained by changing the ion and impurity temperature gradients to a=LTi ¼ a=LTz ¼ 1:0 in

the baseline case. (a) Real and imaginary parts of x ¼ xr þ ic as functions of electron-ion collision frequency �̂ ei. Red line (with circle markers) represents

the real part; blue dash-dotted line (square markers) represents the imaginary part of the eigenvalues. Frequencies are normalized to cs=a. (b) Peaking factor

for nickel as a function of electron-ion collision frequency �̂ ei for different values of peaking angle d and asymmetry strength j ¼ 0:5. Symmetric impurity

density (red, solid line), out-in asymmetry (blue, dashed line), and in-out asymmetry (black, dotted line). Diamonds correspond to GYRO results.
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This paper considers the situation when the poloidal

asymmetry of impurities is purely caused by the poloidal

variation of the electrostatic potential, but centrifugal effects

can also be important especially in strongly rotating plasmas

with neutral beam injection (NBI). Temperature anisotropy

for the main ions is also generated in NBI plasmas which, to-

gether with the centrifugal effects on the main ions, also con-

tribute to the poloidally varying potential. The value of

T?i=Tki depends on the injection geometry, being higher

than unity for perpendicular and lower for tangential injec-

tion. In this case, a more sophisticated model is necessary to

calculate the poloidal variation of the potential and the impu-

rity density.
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APPENDIX A: DERIVATION OF xE

We define xE through vE � rgz ¼ �ixEgz, where vE

is the E� B drift velocity due to the equilibrium electro-

static field. To obtain the expression (3) for xE, we first

note that for an axisymmetric field /E and a perturbed

scalar field gz (satisfying rkgz � r?gz), for a low-beta,

circular plasma

B�r/E � rgz ¼�
@gz

@a
@/E

@w
B2 � @gz

@a
@/E

@z
ðra�rzÞ � B

� @gz

@w
@/E

@z
ðrw�rzÞ � B: (A1)

This expression can be obtained from Eq. (4) of Ref. 22.

Here, z measures the distance along the field line, w is the

poloidal flux, a 
 f� q# is the binormal coordinate with the

toroidal and poloidal angles f and #, and the magnetic field

can be written as B ¼ ra�rw. In the simple geometry

we consider, we have ðra�rzÞ � B 
 �Bq0s#=r2
0 and

ðrw�rzÞ � B 
 B2
0=q. By introducing a rescaled binormal

coordinate y ¼ �ar=q, and using the relation between the

minor radius and the poloidal flux w� w0 
 xB0r0=q0 with

x ¼ r � r0, furthermore using the relation between the radial

and binormal wave numbers kx ¼ kys#0 in terms of the bal-

looning angle #0, Eq. (A1) can be rewritten as

B�r/E � rgz ¼ ikyB
@/E

@r
� 1

r

@/E

@#
sð#� #0Þ

� �
gz: (A2)

With the choice #0 ¼ 0 that is usually true for the most

unstable mode, Eq. (3) follows immediately.

APPENDIX B: VARIATIONAL SOLUTION OF THE GK
EQUATION INCLUDING COLLISIONS MODELED BY A
LORENTZ OPERATOR

The eigenfunctions of the differential operator

L ¼ @

@n
ð1� n2Þ @

@n

� �

are the Legendre polynomials LPnðnÞ ¼ �nðnþ 1ÞPnðnÞ;
which are orthogonal on ½�1; 1�:

Ð 1

�1
dnPnðnÞPmðnÞ ¼ 2dmn=

ð2nþ 1Þ. We aim to find an approximate solution for gz in

the form of a truncated Legendre polynomial series

gzðx; nÞ ¼
P

n gnðxÞPnðnÞ; where only the P0ðnÞ ¼ 1 and

P2ðnÞ ¼ ð3n2 � 1Þ=2 terms are kept (P1 and other odd poly-

nomials disappear upon velocity space integration). Conse-

quently, gzðx; nÞ 
 g0ðxÞP0ðnÞ þ g2ðxÞP2ðnÞ. Using this

approximation, Eq. (4) can be rewritten as

�
P0ðnÞF0ðxÞ þ P2ðnÞF2ðxÞ

��
P0ðnÞ g0ðxÞ þ P2ðnÞ g2ðxÞ

�
þ 3�DðxÞP2ðnÞ g2ðxÞ ¼ P0ðnÞ fSðxÞ; (B1)

where F0ðxÞ ¼ �iðx� 2xDx=3� xEÞ; F2ðxÞ ¼ ixDx=3; and

fSðxÞ ¼ �iZef z0ðx� xT
�zÞ/=Tz: This equation is solved

approximately by adopting a variational approach, and mini-

mizing the functional

K ¼
ð1

�1

dnðP0g0 þ P2g2Þ½ðP0F0 þ P2F2Þ

� ðP0g0 þ P2g2Þ þ 3�DP2g2 � 2P0 fS�: (B2)

Utilizing the orthogonality relation for Legendre polyno-

mials and that
Ð 1

�1
dn P3

2ðnÞ ¼ 4=35, integration yields

K ¼ 2ðF0g2
0 � 2fSg0Þ þ

4

35
F2g2

2

þ 2

5
ð2F2g0g2 þ F0g2

2 þ 3g2
2�DÞ: (B3)

The coefficients g0 and g2 that minimize the functional must

satisfy

@K
@g0

¼ 4 F0g0 � fS þ
1

5
F2g2

� �
¼ 0;

@K
@g2

¼ 8

35
F2g2 þ

4

5
ðF2g0 þ F0g2 þ 3g2�DÞ ¼ 0:

The solution of this linear system is

g0 ¼ 5fSð7F0 þ 2F2 þ 21�DÞ=A2;

g2 ¼ �35F2fS=A2;

A2 ¼ 35F2
0 þ 10F0F2 � 7F2

2 þ 105F0�D;

(B4)

and the non-adiabatic part of the perturbed impurity distribu-

tion function becomes
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gðx; nÞ ¼ g0ðxÞP0ðnÞ þ g2ðxÞP2ðnÞ ¼ A1ðx; nÞ fSðxÞ=A2ðxÞ;
(B5)

where

A1ðx; nÞ ¼ 5
�

7F0ðxÞ þ 2F2ðxÞ þ 21�DðxÞ
�

P0ðnÞ

� 35F2ðxÞP2ðnÞ:
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7S. Moradi, T. Fülöp, A. Mollén, and I. Pusztai, Plasma Phys. Controlled

Fusion 53, 115008 (2011).
8J. L. Terry, E. S. Marmar, K. I. Chen, and H. W. Moos, Phys. Rev. Lett.

39, 1615 (1977).
9M. Romanelli and M. Ottaviani, Plasma Phys. Controlled Fusion 40, 1767

(1998).
10T. Fülöp and P. Helander, Phys. Plasmas 6, 3066 (1999).
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