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Abstract

In this thesis the THz generation mechanism for laser induced gas plasma is investi-
gated with a fluid model for the laser-plasma interaction. The fluid model is solved
numerically in one dimensional simulations, discretized using the Finite-Difference
Time-Domain (FDTD) method. The numerical scheme was tested and compared to
published results of similar models.

Simulations were then carried out to examine how different laser pulses affect the
THz generation. A laser pulse containing only one frequency component was shown
not to generate significant THz radiation, in agreement with the theoretical analysis
also presented in this thesis. For a two-color laser pulse the role of the energy parti-
tioning and the phase shift between the harmonics as optimization parameters were
investigated. It was shown that introducing no phase shift between the harmonics is
the most efficient choice for THz generation, also in agreement with the theoretical
analysis. The results for the energy partitioning showed that about one third of the
energy in the second harmonic is the most efficient choice.

In addition, the role of laser intensity was investigated and the simulations showed
that there is an optimal intensity for efficient generation of THz radiation in one
dimension. The optimal intensity was shown to be the one that corresponds to the
first order ionization of the gas plasma, meaning that all gas-atoms are ionized once.

Keywords: Plasma, Terahertz, Laser, Laser-Plasma-Interaction, Simulation, Maxwell,
Partial Differential Equations, FDTD.
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Sammanfattning på svenska
Den här rapporten behandlar generering av elektromagnetisk strålning med terha-
hertzfrekvenser (THz-strålning) via laser puls interaktion med ett gas mikroplasman.
Den teoretiska bakgrunden undersöks med syfte att skapa en modell som tar hand
om de viktigaste fenomenen som uppstår när en två färgs laser puls av hög intensitet,
I0 ≈ 1018W/m2, propagerar genom en längd argongas. Målet är att undersöka vilka
laserparametrar som kan modulera ner störst mängd energi ifrån laser frekvenserna
till THz-spektrumet.

Terahertzspektrumet sträcker sig från ungefär 300 GHz till 30 THz, där dagens källor
har en låg effektivitet och dålig bandbredd. Elektromagnetisk strålning i detta
spektrumet har visat sig användbar för ett antal olika områden. Flera molekyler har
karakteristiska svängningsfrekvenser i THz-spektrumet, så sådan strålning skulle
kunna användas för spektroskopi. Dessutom är strålning i THz-spektrumet inte
skadliga för levande organismer, till skillnad från röntgenstrålning.

Ett lovande sätt att generera THz-strålning sker genom att en mJ-laser joniserar en
gas för att skapa ett plasma. Genom joniseringen kan det ske modulering ned från
laserfrekvenserna till THz-frekvenserna. Man kan se det som att plasmat agerar som
en antenn med en ström producerad av de fria elektronerna som får en lågfrekvent
komponent genom kopplingen mellan jonisering, elektrondensitet och laserprofilen.

De ekvationer som ingår i modellen sammanfattas som

∇× E(r, t) = −∂tB(r, t), (0.1)
∇×B(r, t) = ∂tE(r, t) + Je(r, t), (0.2)
∂tJe(r, t) = −νeJe(r, t) + ne(r, t)E(r, t), (0.3)
∂tn

Z
e (r, t) = WZ [E(r, t)]nZ−1

ion (r, t)−WZ+1[E(r, t)]nZion(r, t), (0.4)

där E(r, t) är det elektriska fältet, B(r, t) är det magnetiska fältet, Je(r, t) är ström-
men genererad av fria elektroner, νe är kollisionsfrekvensen mellan elektroner och
joner, WZ [E(r, t)] är joniseringshastigheten för jonen med laddning Z, ne(r, t) är
elektrondensiteten och nZion(r, t) är densiteten av joner med laddning Z. Ekvation
0.3 härleds med hjälp av Drudemodellen, och joniseringshastigheten WZ [E] beräk-
nas med Landaumodellen.

Källan till nedmoduleringen av frekvenser är produkten i ekvation (0.3) given av
ne(r, t)J(r, t), och kan till viss del matematiskt analyseras för godtyckliga fält. Detta
görs i rapporten, och ett slutligt uttryck för den delen av fria elektronströmmen JE
som är lågfrekvent nog att kunna innehålla komponenter i THz-spektrumet tas fram.
Detta presenteras i ekvation (2.29).

För simulationerna i uppsatsen är gjorda för en dimension. Fälten antas konstanta
i alla riktningar utom propagationsriktningen, här vald i z-riktningen. Fälten antas
även enbart ha komponenter vinkeräta mot z och vara linjärt polariserade, så att
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ekvationssystemet ovan kan reduceras till

∂zEx(z, t) = −∂tBy(z, t)
∂zBy(z, t) = −∂tEx(z, t)− Jx(z, t)
∂tJx(z, t) = −νeJx(z, t) + ne(z, t)Ex(z, t) (0.5)
∂tn

Z
i (z, t) = WZ [Ex(z, t)]nZ−1

i (z, t)−WZ+1[Ex(z, t)]nZi (z, t).

En förenklad modell som betraktar frekvensspektrumet av källan till nedmodulerin-
gen, JE, undersöks också. Denna källan berättar inte om utsänd THz-strålning,
utan endast om vilka frekvenser som källan innehåller. Eftersom THz-frekvenserna
som genereras är kopplad till vilka frekvenser som källan innehåller kan denna mod-
ellen användas för att förutspå mönster som sedan kan undersökas med rigoröst.
Den förenklade källmodellen tar inte hänsyn till propagation.

För att lösa ekvationssystemet (0.1)-(0.4) används diskretiseringsmetoden Finite-
Difference Time-Domain. Med hjälp av denna delas rum och tid upp i Nt ×Nz ek-
vidistanta punkter för varje storhet, med temporalt avstånd δt och rumsligt avstånd
δz, så att den totala längden som simuleras ges av ∆Z = Nzδz och den totala tiden
ges av ∆T = Ntδt. För att diskretisera storheterna används en symmetrisk approx-
imation av derivatan av en funktion, given av

∂f(x)
∂x

=
f(x+ δx

2 )− f(x− δx
2 )

δx
+O(δx2),

där O(δx2) är en restterm som går mot 0 som kvadraten av argumentet. Om värdet
på en storhet behövs i en punkt där den inte är diskretiserad explicit används en
linjär interpolation mellan de närliggande värdena, så att

f(x) =
f(x− δx

2 ) + f(x+ δx
2 )

2 +O(δx2).

Med dessa approximationer kan ett system sättas upp så att storheterna kan lösas
för alla punkter i rummet i en tidpunkt som funktion endast av tidigare tidpunkter.
Dessa kan sedan användas för att beräkna alla punkter i rummet i nästa tidpunkt.
Denna metoden beskrivs grafiskt i figur 3.1.

Laserpulserna är definierade utifrån dess elektriska fält. En- och tvåfärgslaserpulser
har använts i simuleringarna. Enfärgslasern som har använts ges av uttrycket

Esin(t) = EL sin(ωLt)e
− t2

2t20 ,

där EL =
√

2I0
ε0c

är amplituden av laser, ωL = 2π
λL

är laserns vinkelfrekvens, λL =
800 nm är laserns våglängd och t0 är en karakteristisk pulstid för lasern. För en-
färgslasern undersöktes parametern t0 i syfte att maximera andelen energi i THz-
spektrumet.
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Två olika tvåfärgslasrar har använts, som ges av

Efull(t) =EL

[√
1− ξ sin (ωLt) +

√
ξ sin (2ωLt+ φ)

]
e
− t2

2t20 (0.6)

Ehalf(t) =EL

√1− ξ sin (ωLt)e
− t2

2t20 +
√
ξ sin (2ωLt+ φ)e

− t
2
t20

 , (0.7)

där amplituden, vinkelfrekvensen och den karaktäristiska pulstiden är samma som
för enfärgslasern ovan, φ är första övertonens fasförskjutning och ξ är andelen energi
som fördelas till första övertonen. Skillnaden mellan de två olika lasrarna är att Efull
har samma karaktäristiska pulstid för både grundfrekvensen och första övertonen,
medan Ehalf har halva pulstiden för första övertonen jämfört med grundfrekvensen.
För tvåfärgslasern har parametrarna ξ, φ och I0 undersökts för att maximera THz-
strålning. Valet av ξ och φ påverkar laserpulsens form. Skillnaden tydliggörs i figur
4.6.

För enfärgslasern kunde resultat presenteras som påvisade att den inte kan produc-
era någon meningsfull mängd THz-strålning för något värde på t0, utom för mycket
låga värden, t0 . 1 fs som skapar pulser som är svåra att generera i verkligheten.
Detta beteendet är också något som kunde förutspås i förväg, i enighet med diskus-
sioner om den primära källan till THz-strålning.

För tvåfärgslasern delas resultaten upp i två regioner som karaktäriseras av vilken
intensitet I0 som lasern har. Argongas består av enatomig argon, och varje atom
omges av 18 bundna elektroner. Med tillräckligt stark intensitet skulle gasen därför
kunna joniseras 18 gånger.

Amplituden av laserfältets extrempunkter är starkt kopplat till hur mycket som
joniseras, som i sin tur påverkar hur mycket THz-strålning som skapas. För en
allmän intensitet kommer gasen joniseras olika mycket för olika val av ξ och φ efter-
som dessa parametrar påverkar hur hög amplitud extrempunkterna har. För denna
region är alltså joniseringsgraden en viktigt bidragsfaktor till THz-strålningen, och
maximumen av THz-strålningen mot ξ = 0.5, φ = π/2. För vissa intensiteter jonis-
eras hela gasen till en och samma grad, oavsett vad ξ och φ är satta till. För dessa
intensiteter tenderar ξ = 0.3, φ = 0 att ge störst andel energi i THz-spektrumet.
Utav de intensiteter som kunde undersökas inom modellen fanns sådanna inten-
siteter som joniserade som mest tre gånger med i intervallet. Av dessa hade den
intensiteten som joniserade precis en gång högst effektivitet.

Sammanfattningsvis har en modell över en- och tvåfärgslasers propagation genom en
argongas modellerats. Modellen tar hänsyn till till exempel förändringar i elektro-
magnetiska fält, jonisering och kollisioner mellan elektroner och joner. Enfärgslasern
ser ut att vara för ineffektiv för att användas som THz-källa. Tvåfärgslasern är som
mest effektiv för intensiteten I0 = 4 · 1018 W/m2 med laserparametrarna ξ = 0.3,
φ = 0.
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1
Introduction

The Terahertz (THz) spectrum corresponds to electromagnetic waves with frequen-
cies between 300 GHz and 30 THz, an interval which eludes most contemporary
sources of electromagnetic radiation. This is known as the THz gap. THz radia-
tion has been shown to be useful within several di�erent areas. For example many
molecules have a characteristic spectrum in the THz region, making THz generating
sources useful for spectroscopy [1]. In medical applications the strong interaction
between THz radiation and polar molecules, such as water molecules, is exploited
and detection of diseases such as breast and skin cancer is possible [2]. In addition
it is harmless to living organisms in contrast to X-rays [3]. THz radiation can pen-
etrate materials such as polymers, papers and textiles, a property that can be used
to monitor industrial processes. It is for instance possible to measure the thickness
of drug coatings [4].
Conventional THz sources exist, but unfortunately they su�er from di�erent dis-
advantages. Many of them are sourced by a mJ-laser1 which severely limits their
availability and compactness. A property that none of the conventional sources have
achieved is to produce a signal with a broad enough bandwidth to cover the whole
THz spectrum and take full advantage of its unique characteristics. The largest
bandwidth that is obtained today by established THz sources comes from di�erence
frequency generation (DFG) or optical recti�cation (OR). They can produce a band-
width of about � � � 8-10 THz but are limited to either end of the THz spectrum.
DFG can only generate a signal with higher frequencies in the THz frequency range,
� DFG > 10 THz, while OR generates signals with frequencies in the lower range
0:3 THz < � OR < 8 THz [5].
In 1994 [6] the �rst experiments showed that it was possible to create THz radiation
by inducing a plasma in a gas with high intensity laser pulses. This new source
showed a potential to �ll the THz gap by delivering a signal with a bandwidth broad
enough to cover the entire THz spectrum. But to compete with the conventional
THz sources the laser-to-THz e�ciency, � THz , needed to be further improved. A
decade later, 2008, the technique of inducing the plasma with a two-color laser
pulse was presented. Kim, Taylor, Glownia and Rodriguez[7] achieved a� THz in
their experiment, greater by a factor102 when compared to a single color laser
induced plasma and they created a signal with� � � 75 THz generated with a mJ-
laser. The principle of a two-color laser is to create a second harmonic (SH) to
the fundamental harmonic (FH) by �rst propagating a single color beam through
a non-linear � (2) crystal. The electromagnetic �eld that ionizes the gas will then

1mJ-laser is a laser that can generate a laser-pulse with a energy in the mJ-range.
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1. Introduction

consist of two modes.
The THz generation can be thought in terms of the plasma acting like a small
antenna where the emission is driven by the plasma currentJe(r ; t). To achieve a
THz yield there must be a down conversion from the laser frequencies to the THz
frequencies. This is made possible by a non-linear interaction between the electric
�eld, E(r ; t), and the free electron density,ne(r ; t) [8]. Therefore, the mechanism
by which the laser ionizes the gas to create the free electrons,ne(r ; t), is crucial for
THz generation. A simpli�ed illustration of the THz generation by a laser induced
gas plasma is seen in Fig. 1.1.

E(r ; t)

Ar

e�

Plasma

e�
=

Je(r ; t) THz

Figure 1.1: An electric �eld E(r ; t) ionizes the argon gas thus creating a gas plasma.
The ionized electrons are then accelerated byE(r ; t) and thus generating a current
J(r ; t). The purpose of this thesis is to show how aJ(r ; t) can be created such that
it contains the desired THz-frequencies.

The typical � THz for two-color (2C) laser induced plasma is� 10� 4, which is still too
low [9]. However, the promise of delivering a THz signal that covers the entire THz
spectrum makes the 2C-laser a desired technique. To make further improvements
to the technique, more research has to be done on the parameters that a�ect the
yield and spectrum of the THz radiation. In a study from 2010 [8], the THz spectral
amplitude and width were shown to depend on the pressure of the ionized gas. In
another study [7] there were also indications that the phase shift between the FH
and the SH in a two-color laser has a signi�cant impact on the THz radiation.
The goal with this thesis is to investigate the generation of THz radiation via laser-
plasma interaction. The di�erent laser parameters are studied and their e�ect on the
amount of THz radiation produced via ionization of argon gas is analyzed. In the
next chapter, Physical Background, the equations that govern the most important
phenomena of laser-plasma interaction are de�ned, and limits of the regimes are
discussed. In Numerics, the system of equations is discretized, the solution grid
is de�ned and the solver is tested and validated. In Modeling, the simulation and
laser parameters are set up, optimal parameters for the 1C and 2C-laser pulses
are presented and its behaviour is analyzed. The �nal chapter concludes the most
important results and summarises the path to obtain them.
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2
Physical Background

In this chapter, the physical background for modelling terahertz (THz) generation by
laser induced gas plasmas is presented. The equations that govern the most impor-
tant e�ects in the laser-plasma interaction, such as laser propagation, ionization and
material response are discussed. The limits of the model are also de�ned and core
of the mechanism responsible for generating THz radiation is pointed out. Finally
a simpli�ed model which can be used to �nd promising parameters to maximize the
THz yield is presented.

2.1 Maxwell's Equations

To model the propagation of the laser pulse in a gas and the propagation of the
THz radiation, it is necessary to employ the Maxwell's equations. For the system
described in this thesis, they read12

r � E(r ; t) =
� (r ; t)

� 0
; (2.1)

r � B (r ; t) = 0 ; (2.2)

r � E(r ; t) = � @tB(r ; t); (2.3)

r � B (r ; t) =
1
c2

@tE(r ; t) + � 0Je(r ; t); (2.4)

where E(r ; t) is the electric �eld, � (r ; t) is the charge density,� 0 is the electric
permittivity, B (r ; t) the magnetic �eld, c is the speed of light,� 0 is the vacuum
permeability, and Je(r ; t) is the free electron current. The bound electron response
is neglected in this model. While Maxwell's equations form the basis for the de-
scription of electromagnetic �eld propagation and provide the link between the free
electron current of the plasma and the electromagnetic �elds, they do not describe
the material response of the plasma. For this, a model of the response is presented
in the following section.

2.2 The Physics of the Drude model

In order to couple the free electron currentJe(r ; t) to the electromagnetic �elds, an
additional expression is needed to describe the current produced by electrons that

1Bold faced characters,A denotes vectors and bold faced characters with hat̂x denotes unit
vectors.

2r =
�
@x ; @y ; @z

�
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2. Physical Background

are created when an electric �eld ionizes a gas to create a plasma. The free electron
current is created through the motion of charged particles. In this model, ions are
considered to be stationary, and thus the current depends solely on the speed of the
free electrons as well as the electron density and their charge. As ionization has
to be taken into account, electrons are considered to contribute to the free electron
current Je(r ; t) only after the time of ionization t i . Then, the free electron current
can be written as [8]

Je(r ; t) = qe

Z t

�1
v(r ; t; t i )

�
@ti ne(r ; t i )

�
dti ; (2.5)

whereqe is the elementary charge,v(r ; t; t i ) is the velocity for the electrons born at
a time point t i , @ti ne(r ; t i ) is the change of the electron density at the timet i . Note
that the derivative is taken with respect to t i .
To �nd an expression for the speed of the electrons, consider the Lorentz force on
a single electron with the chargeqe in an electric �eld E(r ; t) and magnetic �eld
B(r ; t). In App. A. it is shown that for electrons velocities that are much smaller
then the speed of light, the magnetic term in the Lorentz force can be neglected,
and the force reduces to

F(r ; t) = qe
�
E(r ; t) + v(r ; t; t i ) � B (r ; t)

�
� qeE(r ; t):

Moreover, to account for collisions of the free electron current with other electrons or
ions, a phenomenological constant damping term is introduced such that Newton's
second law of motion for an electron in such an electric �eld reads

F(r ; t) = me@tv(r ; t; t i ) = qeE(r ; t) � � emev(r ; t; t i ) (2.6)

! @tv(r ; t; t i ) =
qe

me
E(r ; t) � � ev(r ; t; t i ); (2.7)

where� e is the collision frequency. Electrons are considered as a density, not speci�c
electrons. As such, the electric �eld does not depend on electron position, only on the
electric �eld at r . This equation can be solved to determinev(r ; t; t i ). Integrating
from the time t i , when the electron is born, to the current timet, one �nds an
expression for the velocity of the electron given by

v(r ; t; t i ) =
qe

me

Z t

t i

E(r ; � )e� � e(t � � )d�; (2.8)

where the speed of an electron at the time of ionization is assumed to be 0. This
speed is true for one electron, and the Drude model provides an expression to cal-
culate a macroscopic plasma current from a microscopic model of a single electron.
Eq. (2.8) is substituted into Eq. (2.5) and yields, after some algebraic manipulation
[App. B],

@tJ(r ; t) + � eJ(r ; t) =
q2

e

me
ne(r ; t)E(r ; t) : (2.9)

Finally, an equation relating the electron density to the electric �eld is to be deter-
mined.
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2. Physical Background

2.3 The Physics of the Plasma Generation

To generate a plasma from an initially neutral argon gas, the atoms need to be
ionized, that is bound electrons have to escape the atom. The ionization is achieved
by the interaction of the gas with an intense laser pulse.
The Keldysh theory is a well established theory describing ionization, from which
conditions for di�erent ionization regimes depending on the intensity and frequency
of the electromagnetic �eld are extracted [10]. Keldysh's theory is valid for �elds
with intensity I << I at and frequency! << ! at where I at � 3 � 1020 Wm� 2 and
! at � 4 � 1016 s� 1 is of atomic dimensions [App. C].
According to Keldysh's theory an EM-�eld can ionize atoms in a gas in two dif-
ferent ways. For a relatively weak �eld, the mechanism is that of multiphoton
ionization3 and for a relatively strong �eld tunneling ionization is dominant. The
relative strength of an EM-�eld is determined by the Keldysh parameter [10]

 =
!

q
2mejE I j

qeE
; (2.10)

where ! is the frequency of the �eld,E is the amplitude of the �eld and E I is the
ionization energy, which in this thesis is the ionization energy of argon equal to
15:76 eV [11]. For  > 1 the �eld is considered weak and if < 1 it is strong [10].

Figure 2.1: In the �gure the total potential as a function of distance from the
nucleusr , where VL is the potential created by an external laser pulse,VC is the
Coulomb potential from the nucleus andEA is the energy of the bound electron.
Total potential is given as the di�erence ofVC and VL . Tunneling is possible through
the potential barrier visible on the right side of the �gure.

The binding energy of an electron depends on the Coulomb potential of the nucleus,
VC , shown as the blue dashed-dotted line in Fig. 2.1.VC yields an attractive force
on the electron that is inversely proportional to the distancer from the nucleus.
With the electric �eld from a laser, EL , it is possible to change the potential so that
it becomes the di�erence betweenVC and VL , seen in Fig. 2.1 as the black solid line.
The created barrier implies the possibility for the electron to tunnel and escape the

3nice reading about multiphoton ionization in N. B. Delone and V. P. Krainov, Multiphoton
Processes (Springer, New York, 1985)
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2. Physical Background

atom. The probability for an electron to tunnel increases with time given a constant
potential barrier, and it also increases the smaller the potential barrier is. For an
oscillating �eld this potential barrier only exists for a limited time proportional
to half the period of the �eld, thus the tunneling rate depends on the period and
amplitude of the oscillating �eld. When the period of the �eld is long enough and
the amplitude su�ciently high for e�cient tunneling to occur the �eld is considered
strong and  << 1 [10].
In this thesis �elds corresponding to � 1, e.i. the tunneling regime, will be
considered and a static model of the tunneling ionization is used according to a
model derived by Landau [12]. The model expresses the ionization rateW Z as

W Z [E(r ; t)] = 4 ! at (rH )5=2

 
Eat

jE(r ; t)j

!

exp

0

@�
2(rH )3=2Eat

3jE(r ; t)j

1

A ; (2.11)

where ! at � 4 � 1016 s� 1 is the same as above andEat � 5 � 1011, see App. C,
and E(r ; t) is the electric �eld. The factor rH depends on the atom to be ionized.
Argon has, for instance, 18 electrons and could therefore in principle be ionized 18
times. The rH -factor therefore readsrH = E Z

ar=EH where E Z
ar is the Z th order of

ionization energy for argon andEH is the ionization energy of hydrogen. In App.
D all ionization energies for argon are listed. In Fig. 2.2.(a),W Z is seen an a
function of the intensity of the E-�eld, I 0, for the �rst three orders of ionization.
W Z is exponentially increasing for all orders of ionization but with critical points
at higher intensities for higher the order of ionization. The exponential increase of
W Z makes a oscillating �eld only ionize a considerable amount of electrons around
the maximum or minimum of it is oscillation. This makes the increase of electron
density have a steplike increase, this will be shown to be crucial for the generating
THz-frequencies by this model. The steplike increase can be seen in Fig. 2.2.(b).

Figure 2.2: In (a) the ionization rate W Z for the �rst three orders of ionization
in argon gas. The horizontal dashed line marksW Z = 0:1. The vertical dashed
lines marks critical intensities for when the rate of ionization is equal to 0.1 for �rst,
second and third order of ionization respectively. In (b) the steplike increasene when
ionized by a laser pulse.tk corresponds to maxima ofEx that give W[Ex ] > 0:1.
This steplike increase is shown in Sec. 2.6 to have a crucial role in THz-genration.

When considering a gas with an atomic numberK it is possible to ionize all theK
electrons bound to the nucleus. To take every species of ions into account the rate

7



2. Physical Background

equation for the ion density of orderZ > 1; Z < K is

@tnZ
ion(r ; t) = W Z [E(r ; t)]nZ � 1

ion (r ; t) � W Z +1 [E(r ; t)]nZ
ion(r ; t); (2.12)

where nZ
ion is the density of ions with chargeZ . The �rst term W Z [E(r ; t)]nZ � 1

ion

corresponds to the rate that a lower order of ionsZ � 1 become ionized and the
second termW Z +1 [E(r ; t)]nZ

ion is the rate of events leading to ionization ofZ -times
charged ions, leading to creation ofZ + 1-times charged ions. Note thatn0

ion is the
density of neutral atoms and thusW 0 = 0. Also W K +1 = 0 since it is only possible
to ionize K times. The electron densityne(r ; t) follows from the quasineutrality as

ne(r ; t) =
X

Z

ZnZ
ion(r ; t): (2.13)

and n0
ion (t = �1 ) = nat wherenat is the density of argon atoms.

2.4 Summarizing the Full Model in 1D with Plasma
Units

The full model to simulate the THz generation in this thesis consists of Maxwell's
curl equations coupled to the macroscopic current equation Eq. (2.9) and the ion
rate equations Eq. (2.12),(2.13). In plasma units, de�ned in App. E, the system of
equations for the full model4 is

r � E(r ; t) = � @tB(r ; t); (2.14)

r � B (r ; t) = @tE(r ; t) + Je(r ; t); (2.15)

@tJe(r ; t) = � � eJe(r ; t) + ne(r ; t)E(r ; t); (2.16)

@tnZ
e (r ; t) = W Z [E(r ; t)]nZ � 1

ion (r ; t) � W Z +1 [E(r ; t)]nZ
ion(r ; t): (2.17)

For the simulation in 1D all �elds are assumed to be constant in all but the direction
for the laser propagation, here chosen to be thez-direction, which implies that

@xE(r ; t) = @yE(r ; t) = @xB(r ; t) = @yB(r ; t) = 0 : (2.18)

Any �eld A will further be seen as functions of onlyz

A (r ; t) ! A (z; t); (2.19)

From Faraday's and Ampere's law, Eq. (2.14),(2.15), one obtains the set of equations

(2:14) ! x̂ : � @zEy(z; t) = � @tBx (z; t);

ŷ : @zEx (z; t) = � @tBy(z; t);

(2:15) ! x̂ : � @zBy(z; t) = @tEx (z; t) + Jx (z; t);

ŷ : @zBx (z; t) = @tEy(z; t) + Jy(z; t):

4Gauss law, Eq. (2.1), and the equation for the divergence ofB, Eq. (2.2), are not solved
explicitly, since solving the curl equations implicitly solves them.

8



2. Physical Background

These can be arrange into two sets of equations as

!

8
<

:
x̂ : � @zEy(z; t) = � @tBx (z; t)

ŷ : @zBx (z; t) = @tEy(z; t) + Jy(z; t)

8
<

:
x̂ : � @zBy(z; t) = @tEx (z; t) + Jx (z; t)

ŷ : @zEx (z; t) = � @tBy(z; t):
(2.20)

These are two decoupled sets of equations.Jx depends only onEx and Jy only on
Ey. In this thesis, only linearly polarized �elds are considered. Thus, for the 1D
Solver, the �elds are set such thatE = Exx̂ , B = Byŷ and Je = Jxx̂ . With this
choice, Eq. (2.16) and (2.17) reads

@tJx (z; t) = � � eJx (z; t) + ne(z; t)Ex (z; t);

@tnZ
ion(z; t) = W Z [Ex (z; t)]nZ � 1

ion (z; t) � W Z +1 [Ex (z; t)]nZ
ion(z; t);

respectively. Summarizing all the equations that are used to simulate the laser-
plasma interaction in 1D gives the equation system

@zEx (z; t) = � @tBy(z; t); (2.21)

@zBy(z; t) = � @tEx (z; t) � Jx (z; t); (2.22)

@tJx (z; t) = � � eJx (z; t) + ne(z; t)Ex (z; t); (2.23)

@tnZ
i (z; t) = W Z [Ex (z; t)]nZ � 1

ion (z; t) � W Z +1 [Ex (z; t)]nZ
ion(z; t); (2.24)

where the rate equation Eq. (2.24) needs to be solved for every orderZ of ions that
are considered.

2.5 Valid Laser Intensities and Frequencies

The laser wavelength which is considered in this thesis is� L = 2�c=! L = 800 nm.
This gives a range of laser intensitiesI 0 = [1018; 1020] Wm� 2 for which the model is
valid. The lower bound is set by the Keldysh parameter , where I 0 = 1018 Wm� 2

corresponds to � 1:148, according to Eq. (2.10). The upper bound set to ensure
that the magnetic force contribution from the Lorentz force,(v � B ), is negligible,
that is when the velocities for the electrons in the plasma are much smaller then the
speed of light. The maximum electron velocity,vmax , in an oscillating E-�eld can
be approximated, see App. F, as

vmax =
qeEL

me! L
: (2.25)

The upper bound in this thesis is then set to the intensityI 0 = 1020 Wm� 2 which
gives maximum electron velocity ofvmax � 0:068c.

2.6 Frequency down conversion via Ionization Cur-
rent

The laser-plasma interaction in this model is encapsulated in the current Eq. (2.23).
All frequencies produced in the interaction results from the non-linear term that

9



2. Physical Background

involves the product betweenne(z; t) and Ex (z; t). Since this is the only source of
frequency mixing, it is crucial that this product creates a down conversion to near-
zero, i.e. THz, frequencies. The discussion in this section is for a �xed point in
space, hence the spatial dependency is omitted for simplicity.

Figure 2.3: The �gure shows the frequency spectrum of both~E(! ) and the electron
density ~ne(! ) produced by ionization, for a �xed point in space. In (a) a one-color
laser pulse used,EL (t) / sin(! L t), respectively for (b) a two-color laser pulse is
used,EL (t) / sin(! L t) + sin(2 ! L t).

In Fig. 2.3.(a) the frequency spectrum ofEx (t) and corresponding frequency spec-
trum of ne is shown for the simplest laser pulse, a one-color (1C) laser pulse. This
pulse consists of only one harmonic oscillating with the laser frequency! L , that is
EL (t) / sin(! L t). In Fig. 2.3.(b) the same quantities are shown for a laser pulse
with two harmonics, a two-color laser pulse (2C). The fundamental harmonic (FH)
oscillates with ! L and the second harmonic (SH) oscillates with two times the laser
frequency such thatEL (t) / sin(! L t) + sin(2 ! L t). It is seen that in the 1C-case
the laser pulse has a peak at! L and the electron density at two times the laser
frequency,2! L . This is because the electron density increases whenever the electric
�eld has a maximum or a minimum, seen in Fig. 2.1.(a). Using the trigonometric
identity for a product between two harmonics with di�erent frequencies according
to

2 sin(! 1t) sin(! 2t) = cos[(! 1 � ! 2)t] � cos[(! 1 + ! 2)t]; (2.26)

with ! 1 = ! L and ! 2 = 2! L , gives the following expression for the 1C-laser pulse

2 sin(! L t) sin(2! L t) = cos(� ! L t) � cos(3! L t): (2.27)

It is clear that no down conversion from! L has occurred. The �rst term is just a
harmonic oscillating with the laser frequency again, and the second term a harmonic
oscillating with three times the laser frequency. Thus it can be predicted that no
signi�cant amount of THz radiation will be generated by a 1C-laser pulse. But, in
the general case, there is a potential to create low frequencies from the �rst term in
Eq. (2.26). For instance in the 2C-case, seen in Fig. 2.3.(b), the frequency spectrum
of Ex (t) has peaks at! L and 2! L while the frequency spectrum ofne(t) has peaks
at several di�erent frequencies, including frequencies close to those ofEx (t). This

10



2. Physical Background

means that there are possibilities to obtain down conversion from Eq. (2.26) because
the di�erence between! 1 and ! 2 can be small or even zero for certain harmonics in
Ex (t) and ne(t).
The above prediction for the down conversion are made by only considering the non-
linear product of Ex (t) and ne(t). Now instead consider the full model, for which
low frequency components are needed in the free electron currentJe(t) to produce
THz emission.
Low frequencies are created by a net gain of electron velocity in one direction. This
drift implies that, if collisions are neglected, whent ! 1 , Jx (t) is not equal to zero.
A laser pulse that does not accelerate electrons symmetrically in both direction is
then required. From Eq. (2.5) the following expression forJx (t) can be derived as
[App. G.]

Jx (t) =
X

k

ne(tk)H(t � tk)
Z tk

�1
Ex (� )d�; (2.28)

where tk is the time of every ionization event, i.e. the times whereEx has an
extremum. The steplike increase of thene at tk is visualized in Fig. 2.1.(b). ne(tk)
is the electron density at that time and H(t � tk) is the Heaviside function.
For a 1C-laser pulseEx will have componentsEL / sin(! L t)5 and Eq. (2.28) gives

Jx /
X

k

ne(tk)H(t � tk)
cos (! L tk)

! L
: (2.29)

Sincecos(! L tk) is zero wheneversin(! L tk) is at an extremum, i.e. when the ioniza-
tion occurs,Jx is zero. However, for a short pulse the envelope6 can not be neglected
and Eq. (2.28) might give nonzero values.
Consider now a 2C-laser pulse, such that

EL (t) /
q

1 � � sin(! L t) +
q

� sin(2! L t + � ); (2.30)

where ! L ; 2! L is the frequency of the FH and SH respectively,� is the fraction of
energy in the FH and� is the relative phase between the FH and SH. For this pulse
Eq. (2.28) becomes

Jx /
X

k

ne(tk)H(t � tk)

0

@

p
1 � � cos (! L tk)

! L
+

p
� cos (2! L tk + � )

2! L

1

A (2.31)

This can certainly be nonzero because of the phase shift� . To maximize Jx , and
thus the slow component ofJx responsible for the THz frequencies, di�erent� and
� will be investigated. In Fig. 2.4.(a) a 1C-laser pulse is shown not to create a
o�set in the current according to Eq. (2.29) whent ! 1 whereas 2C-laser pulse
in Fig. 2.4.(b) does create the o�set needed for the down conversion to near-zero
frequencies by Eq. (2.30).

5for simplicity the envelope is neglected here, see App. G for details

6All envelopes in this thesis are a gaussian function with the form,e
� t 2

2 t 2
0 , weret0 is characteristic

duration for the laser pulse.
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Figure 2.4: The time trace shown in �gure (a) and (b) are extracted from a spatial
point inside a gas plasma. The laser pulses have the wavelength� L = 800 nm, a
gaussian envelope with the characteristic pulse duration,t0 = 7 fs, and for the 2C-
laser in (b) the laser parameters� = 0:3 and � = 0 in Eq. (2.30). In (a) a 1C-laser
pulse is shown that it does not create an o�set inJx , Eq. (2.28). For a 2C-laser
pulse, shown in (b) there is a slight o�set inJx after the pulse. This is the driving
mechanism of the THz-generation in this model.

2.7 Simple source model, SSM

As argued above in Sec. 2.6 the frequency down conversion stems from the particular
time dependence of the product ofEx (z; t) and ne(z; t). Examining the frequency
components of the termne(z; t); Ex (z; t) gives a more �exible way to predict the
THz-yield. If collisions are neglected, Eq. (2.16) becomes

@tJx (z; t) = ne(z; t)Ex (z; t); (2.32)

where theE-�eld can be decomposed into the vacuum �eld from the laserEL (z; t)
and the �eld created by the excitation of the plasma~E(z; t),

@tJx (z; t) = ne

�
EL (z; t) + ~E(z; t)

�
: (2.33)

Since the �eld from the laser is the driving part of the current, for simplicity one
can consider the source term

i = ne(z; t)EL (z; t): (2.34)

The simple source model (SSM) is introduced where the source termi is calculated
with the time trail of a prescribed �eld EL (z0; t) in one point of space andne(z0; t)
is calculated using Eq. (2.24) at that point. The bene�t of the SSM is that the
simulations do not require propagating the EM-�elds, sinceEL (t) is considered to
be known and the code is thus much faster than when solving the full set of equations.
Since the simulations with SSM are much faster, they can be very e�ciently used to
�nd interesting trends and then con�rm them with the 1D Solver. SSM is limited
to a single point in space, and e�ects of propagation are neglected.
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3
Numerical methods

With the physical background established in the previous chapter, the next step
is to translate the equations into discrete versions which are to be solved by com-
puters. To this end, the Finite-Di�erence Time-Domain (FDTD) method is intro-
duced and applied. The Yee-scheme is established to specify the order in which
the equations must be solved. The numerical solutions are then compared to some
analytic solutions. The dispersion relation is derived for a plasma and then the
dispersion in the code is calculated compared to analytic values. Moreover, en-
ergy conservation and dispersion properties of the solver are analyzed. The con-
vergence of the code is shown with respect to the energy, dispersion relation and
the frequency spectrum for the parameter sweeps done in the result part of the
thesis, see App. H. The frequency spectrum from the simulations by this code is
also compared to published results made with a similar model, the di�erent fre-
quency spectra are shown in App. I. The implementation can be downloaded at
https://github.com/erikadamstrandberg/TERAHERTZGENERATION.

3.1 Discretization using the Finite-Di�erence Time-
Domain method

In order to solve Eqs. (2.21)-(2.24) forEx (z; t); By(z; t); Jx (z; t), ne(z; t) andnZ
ion(z; t),

each �eld has space and time discretized intoNz � N t equidistant points with the
temporal distance�t and spatial distance�z . The total length of the simulation is
� Z = Nz�z , and the total time of the simulation is � T = N t �t . To solve the equa-
tions the FDTD [13] method is used. This is a well established method for solving
electrodynamic problems. It is with a known dispersion relation for the Maxwell
equations and
Using Taylor expansions forf (x + �x ) and f (x � �x ), the derivative of any di�eren-
tiable function f (x) can be approximated as [13]

@f(x)
@x

=
f (x + �x

2 ) � f (x � �x
2 )

�x
+ O(�x 2); (3.1)

whereO(�x 2) is shorthand notation for the remainder term, which approaches zero
as the square of the argument, giving an accurate expression for a su�ciently small
�x .
In addition, linear interpolations between two discrete points are de�ned as

f (x) =
f (x � �x

2 ) + f (x + �x
2 )

2
+ O(�x 2): (3.2)
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3. Numerical methods

Both the approximations above, used throughout the discretization, have a second
order error term.

t

z

i � 1

i

i � 1
2

i + 1
2

k � 1
2

k k + 1
2

k + 1 k + 3
2

k + 2

= E

= B

= ne,nZ
ion

= J

Figure 3.1: The discrete grid where the di�erent quantities are approximated. Ac-
cording to this schemeE takes turn with B; J; n e to be solved for all spatial points
to evolve the simulation forward in time by the update Eqs. (3.5)-(3.8). Note the
shift of �t= 2 and �z=2 in the discretization of time and space for the di�erent �elds.

3.1.1 Discretizing the Maxwell curl equations

The discretization of Maxwell's curl equations Eq. (2.21) and (2.22) by Eq. (3.1)
introduces a shift in space and time by�z=2 and �t= 2 for Ex (z; t); By(z; t) that can
be seen in Fig. 3.1. This way of discretizingE(z; t); B(z; t) by shifting the �elds a
half step with respect to each other is called a Yee-scheme or a leap-frog scheme [13].
For the sake of brevity a continuous functionA(z; t) will be abbreviated with zp =
p�z and tq = q�t

A(zp; tq) = A(p�z; q�t ) = Aq
p; p; q2 R: (3.3)

Steps in the di�erent discrete grids for the �elds are denoted by the integersk for
spatial steps andi for temporal steps, this can again be seen in Fig. 3.1,

k = 0; 1; :::; Nz; i = 0; 1; :::; Nt : (3.4)

Using the approximation of Eq. (3.1), the Maxwell's equation can be discretized as

B
i + 1

2
k = B

i � 1
2

k �
�t
�z

�

E i
k+ 1

2
� E i

k� 1
2

�

; (3.5)

E i
k+ 1

2
= E i � 1

k+ 1
2

�
�t
�z

�

B
i � 1

2
k+1 � B

i � 1
2

k

�

� �tJ
i + 1

2

k+ 1
2
: (3.6)
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With these two equationsE i
k+ 1

2
; B

i + 1
2

k are explicitly solved in time, meaning that to
be solved for a speci�c time stept i the �elds only need to be known for previous
time stepst < t i . With Eq. (3.5),(3.6) the E; B -�elds can take turn being updated
for all spatial points moving the simulation forward in time, for this reason they are
called update equations.
The Yee-scheme for updating the EM-�elds does a second order error for the choice
length in spatial and temporal step�z; �t from Eq. (3.1).
Also note that this shift in space means that to calculate a solution for theE; B -
�eld for a spatial point with index k the respective �eld needs to be known at the
neighboring pointsk + 1

2 ; k � 1
2 . This means that the boundary of the simulation

window can not be solved by the update equations Eq. (3.5),(3.6) and instead
needs to be set to ful�ll some boundary condition. For the simulations in this thesis
E i

0 = E i
N = 0 which corresponds to the edges of the simulation window being perfect

conductors.

3.1.2 Discretizing the ionzation rate equation and the cur-
rent equation.

When coupling the current and plasma equation to the Maxwell's equations, there
is a choice on how to discretize the currentJx (z; t) and the electron and ion density
ne(z; t); nZ

ion(z; t). Equation (3.6) enforces thatJx (z; t) is discretized at the same
spatial step asEx (z; t), but shifted in time by �t= 2. The electron and ion density
ne(z; t); nZ

ion(z; t) can be discretized freely, but it should be done so to keep the second
order accuracy of the scheme. Herene(z; t); nZ

ion(z; t) is discretized like the current
Jx (z; t). A bene�t from this choice of discretization ofne(z; t); nZ

ion(z; t) and Jx (z; t)
is that ne(z; t); nZ

ion(z; t) are the only solutions that need to be saved for more than
one time step, which makes the computation use less memory. The discretization of
Jx (z; t) and ne(z; t); nZ

ion(z; t) is visualized in Fig. 3.1.
Using Eqs. (3.1),(3.2) to discretize Eqs. (2.23),(2.24) gives

J
i + 1

2

k+ 1
2

=

�
1 � � e�t

2

�
J

i � 1
2

k+ 1
2

+ �t
2

�

(ne)
i + 1

2

k+ 1
2

+ ( ne)
i � 1

2

k+ 1
2

�

E i
k+ 1

2�
1 + � e�t

2

� ; (3.7)

�
nZ

ion

� i + 1
2

k+ 1
2

=

�

1 � �t
2 W Z +1 [E i

k+ 1
2
]
� �

nZ
ion

� i � 1
2

k+ 1
2

+ �t
2 W Z [E i

k+ 1
2
]

 
�
nZ � 1

ion

� i + 1
2

k+ 1
2

+
�
nZ � 1

ion

� i � 1
2

k+ 1
2

!

�

1 + �t
2 W Z +1 [E i

k+ 1
2
]
� :

(3.8)

Note that these update equations di�er from the discretization of the Maxwell's
equations in the sense that they do not only depend on the �elds from previous time

steps. The update equation for the currentJ
i + 1

2

k+ 1
2

depends on the electron density

(ne)
i + 1

2

k+ 1
2

and the ion density
�
nZ

ion

� i + 1
2

k+ 1
2

depends on
�
nZ � 1

ion

� i + 1
2

k+ 1
2

, both are dependent

on solutions of the �elds at the same time step. This means that it is �rst required
to solve the ion densities from the lowest order of ionization to the highest, update
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3. Numerical methods

the electron densityne(z; t) and then solve for the currentJx (z; t) to update a time
step for Jx (z; t); ne(z; t) and nZ

ion(z; t).

3.2 Validating the numerical scheme

The code, created to solve the discretized system discussed above, is tested in dif-
ferent ways to ensure it is working correctly. Either, if possible, simpli�cations have
been made to achieve analytic solutions to compare with, or the code has been
benchmarked to published results. The Eqs. (2.21) and (2.22) have been compared
with analytic solutions in the special case of an electromagnetic wave in vacuum.
Then the dispersion, when propagating in plasma, has been compared with cal-
culations of the analytic dispersion relation in plasma. Also Eq. (2.23) has been
compared with analytic solutions. The code solving Eq. (2.24) has been compared
with published results.

3.2.1 Principle for testing the Maxwell solver in vacuum

To check that the discretization of Maxwell's Eqs. (2.21) and (2.22) are correct,
they are considered in vacuum,Jx (z; t) = 0 . In vacuum they are equivalent to two
wave equations, one for theE-�eld and one for the B-�eld

@2
z Ex (z; t) � @2

t Ex (z; t) = 0 ; @2
z By(z; t) � @2

t By(z; t) = 0 ;

which have the solutions

Ex (z; t) = f (z � t) + g(z + t); By(z; t) = f (z � t) � g(z + t): (3.9)

The functions f (z � t) and g(z + t) are forward respectively backward propagating
waves along thez-axis and represent a rigid pro�le that is propagating with the speed
v = � 1. The sign di�erence ing(z+ t) comes from requiring that the solutions satisfy
Eq. (2.21).
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3. Numerical methods

Figure 3.2: In (a), an initial condition EL (t) = E0 cos (! L t)e
� t 2

2t 2
0 and BL = 0 has

been set up. In (b) both the forward and backwards solution to the wave equations
Eq. (3.9) can be seen. They keep their rigid pro�le and the backwards propagating
solution g(z + t) has opposite sign forBy(z; t) compared to the forward solution as
predicted.

In Fig. 3.2 it is seen that the initial condition By(z;0) = 0 implies f (z) = g(z)
from Eq. (3.9). Using this initial condition the solver creates both the forward and
backwards propagating wave as expected.

3.2.2 Introducing a forward propagating laser pulse

Only a forward propagating wave solution is needed for further simulations. To
achieve this the initial condition Ex (z;0) = By(z;0) is used so that Eq. (3.9) only
gives a forward propagating wavef (z). By Eq. (3.6) the discrete initial conditions
for a forward propagating wave read

E 0
k+ 1

2
= f k ! B

0+ 1
2

y =
�t
�z

�

f k+ 1
2

� f k� 1
2

�

; (3.10)

for any function f (z), were Ex (z; t); By(z; t) = 0 for the time steps t < 0 . Note
that this is only valid for inserting a pulse in vacuum since it depends on Eq. (3.9),
which says that f (z � t) propagates with the speedv = 1. This is however not true
in a dispersive medium.

3.2.3 Verifying the plasma dispersion

The plasma dispersion relation can be derived from the system of Eqs. (2.21)-(2.24)
by assuming a preformed plasma. This means setting the electron density to be
constant in time ne(z; t) = ne ! @tne = 0 for every spatial point z. By considering
the di�erent �elds in temporal Fourier space a wave equation for theE-�eld is found
as [App. J]

�
@2

z + ! 2 � ne

�
Êx (z; ! ) = 0 ; (3.11)
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which has solutions with a frequency dependent wave number

~E(z; ! ) = ~E(0; ! )e� ik (! )z; k(! ) =
q

! 2 � ne: (3.12)

The sign di�erence ine� ik (! ) corresponds to a forward propagating solution with� ,
and a backwards propagating solution with+ . In plasma units, found in App. E,
the plasma frequency is de�ned as! 2

p = ne,

k(! ) =
q

! 2 � ! 2
p: (3.13)

Thus, for all modes with frequency,� = != 2� , lower than the plasma frequency,
� p = ! p=2� , the wave numberk(! ) becomes imaginary. These modes are evanescent
while modes with k(! ) 2 R are propagating modes. Eq. (3.13) is equivalent to
having ! as a function ofk instead, as

! (k) =
q

k2 + ! 2
p; (3.14)

which is the plasma dispersion relation.
To be able to compare this analytic dispersion relation to the numerical disper-
sion relation in the code, the wave equation Eq. (3.12) is used. For two forward
propagating solutions that has propagated a lengthza and zb Eq. (3.12) read

~Ex (za; ! ) = ~Ex (0; ! )e� ik (! )za ; ~Ex (zb; ! ) = ~Ex (0; ! )e� ik (! )zb !

!
~Ex (zb; ! )
~Ex (za; ! )

= e� ik (! )( zb� za ) : (3.15)

The phase of the quotient between two temporal Fourier transforms of the electric
�eld that has propagated a lengthza and zb is a function of the dispersion relation
k(! ) in Eq. (3.13).
By propagating a laser in a preformed plasma and then extractingE(z; t) at the
two points za and zb separated by the lengthz0 = zb � za, as seen in Fig. 3.3.(a).
The error in the dispersion from the code, in comparison to the analytic dispersion,
is shown in Fig. 3.3.(b). In App. H. the convergence of the dispersion in the code
is also shown to converge to the analytic solution. Note that for a plasma ionized
from a gas with atom densityne = 2:7� 1025 m� 3, gives! p � 0:124<< 1, [App. K].
This gives a plasma dispersion relation, Eq. (3.14) that is very close to the vacuum
dispersion

! (k) =
q

k2 + ! 2
p; ! 2

p << 1 ! ! (k) � k: (3.16)

To observe a plasma dispersion relation that sharply di�er from the vacuum relation,
the laser pulse is propagated through a preformed plasma withne = 8 � 1026 m� 3

which corresponds to! p � 0:677.
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3. Numerical methods

Figure 3.3: In (a) the setup for calculating the plasma dispersion relation in the code
by Eq. (3.15) is shown. Having a constantne pro�le in the simulation represents
a preformed plasma. TheE-�eld is extracted at the black lines in the plasma
separated by the lengthz0 = zb � za. In (b) the convergence of the total relative
error of the dispersion from the code! (k) when compared to the analytic dispersion
! a(k) dependency on the �ner spatial resolution�z . The temporal resolution is set
to �t = 0:99�z .

3.2.4 Verifying the Current Equation

The current equation, Eq. (2.24), can be solved analytically by settingEx (z; t) =
Ex (z) and ne(z; t) = ne(z) as constant in time. For a �xed point in spacez0 the
current equation is

@tJ (z0; t) = � � eJ (z0; t) + ne(z0)E(z0);

which has the analytic solution

J (z0; t) = J0(z0)e� � et +
ne(z0)E(z0)

� e

�
1 � e� � et

�
;

assuming a initial current J (z0; 0) = J0(z0). The di�erence between the discrete
version and the analytic version is plotted in Fig. 3.4.

Figure 3.4: The di�erence between the solution to Eq. (2.23) and the solution to
the same discretized Eq. (3.7) are plotted. The same parameters are used in both
solutions.
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3.2.5 Validity of Code in Calculating the Electron Density

To validate the part of the code that calculates the electron density according to
Eq. (3.8) a simulation of a laser pulse that ionizes argon gas was made. The time
evolution of the process is considered in one point of space. This simulation is
compared to results presented in [14]. The laser pulse used is described by

E(t) = E0 sin (! L t) exp

 
� t2

t2
0

!

; (3.17)

where! L = 2�c=� and E0 = (2 I 0=�0c)1=2. The intensity used isI 0 = 4 � 1014 W/cm 2

and the wavelength is� = 800 nm. Pulse duration is characterized byt0 = 50 fs.
The atom density was set tonat = 3 �1019 cm� 3 at the beginning. For the comparison
of ne, only the ionization equation (2.11) with a prescribed time-dependent electric
�eld from Eq. (3.17) is considered.

Figure 3.5: Electron density,ne, and the envelope of the pulse intensity,I , as a
function of time. ne is normalized to the atom density,nat = 3 � 1025 m� 3, at t = 0
and I is normalized toI 0 = 4 � 1018 Wm� 2. The pulse duration is characterized by
t0 = 50 fs.

In Fig. (3.5) the result is shown which demonstrates the same step-like increase of
the electron density as [14]. It is also seen that full ionization is reached, which also
applies to the simulation in [14].

3.2.6 Energy conservation

With normalized units according to App. E, the energy densityU of the electro-
magnetic �eld is

UEM (z; t) =
1
2

�
E 2

x (z; t) + B 2
y (z; t)

�
: (3.18)

The total energy UL (t) at time t is the space-integral ofUEM according to

UL (t) =
1
2

Z

� Z

�
E 2

x (z; t) + B 2
y (z; t)

�
dz: (3.19)

Since the system described in Sec. (2.4) is one dimensional,UL is actually energy
per area.
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The rate of change in the energy of the laser pulse is described by the Poynting
theorem [15]

� @tUEM (z; t) = @zSz(z; t) + Jx (z; t)Ex (z; t); (3.20)

where Jx (z; t)Ex (z; t) is the rate of work done at charged particles by the �eld
and @zSz(z; t) is the energy �ux. The Ponyting theorem is used here to calculate
the energy conservation in the simulation, in App. L, a expression for physically
interpreting Jx (z; t)Ex (z; t) is derived.
Because of the boundary conditions used in this thesis areE i

0 = E i
end = 0, Sec.

3.1.1, the integral over the energy �ux for allz 2 � Z is zero. The loss of EM-energy
,� UEM = Uloss, is after a time t therefore

Uloss(t) =
Z t

0

Z

� Z
@zSz(z; � ) + Ex (z; � )Jx (z; � )dzd� =

=
Z t

0

Z

� Z
Ex (z; � )Jx (z; � )dzd�: (3.21)

This energy is used to accelerate the electrons in the plasma and for energy to be
conserved in the modelUtotal = UL + Uloss should be constant for all times. That is

Utotal (t) =
Z

z

 
1
2

E 2
x (z; t) +

1
2

B 2
y (z; t) +

Z t

0
Jx (z; � )Ex (z; � )d�

!

dz = U0; (3.22)

where U0 is the initial energy of the system. Since the laser pulse initially is put
into vacuum, and therefore no current exist,U0 is calculated asUL (0) according to
Eq. (3.19). Due to the Yee-scheme in Fig. 3.1 the numeric solution ofEx (z; t) is
de�ned at half a time-step beforeBy(z; t) and Jx (z; t) and the numeric solution of
By(z; t) is de�ned at half a space-step beforeEx (z; t) and Jx (z; t). A mean value
in time is therefore used forEx (z; t) and a mean value in space forBy(z; t) in the
discretization of Eqs. (3.19) and (3.22) according to

E
i
k =

1
2

(E
i + 1

2
k + E

i � 1
2

k );

B
i
k =

1
2

(B i
k+ 1

2
+ B i

k� 1
2
):

The discretization of Eq. (3.22) becomes

Utotal (t) � �z
X

k

0

@1
8

(E
i + 1

2
k + E

i � 1
2

k )2 +
1
8

(B i
k+ 1

2
+ B i

k� 1
2
)2+

�t
tX

i =0

J i
k �

1
2

(E
i + 1

2
k + E

i � 1
2

k )

1

A : (3.23)

To show that the energy is conserved in the model a simulation was made and
the energy calculated according to Eq. (3.23). The initial simulation window is
presented in Fig. 3.6 where the area marked with the dotted line is the atom
density of the slab of argon gas. The argon gas is50 � m long with additional ramps
that are about 10 � m each. The atom density,nat , is at most 3� 1025 m� 3. Also the
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3. Numerical methods

initial pulse is shown as the solid line in Fig. 3.6. The pulse is the same as in Eq.
(3.17). The simulations were made for di�erent�z and �t = 0:9�z .

Figure 3.6: The initial simulation window for simulations where energy conservation
was checked. At timet = 0 the pulse was put in vacuum and a length of argon gas
with atom density nat was inserted betweenz = 300 and z = 900 with a linear ramp.

Figure 3.7: (a) Total energy of the simulation window,Utotal (t), normalized to the
initial energy, U0, for a system consisting of a laser pulse propagating �rst in vacuum,
then in argon gas-plasma, and then vacuum again. (b) Relative maximum error for
simulations with di�erent �z separated by0:01 units in the range0:01 to 0:10.

The result of a simulation with �z = 0:01 and �t = 0:009 is shown in Fig. 3.7.(a)
where the total energy in the simulation window is plotted for all times. The energy
is seen to be conserved within a magnitude of10� 7. It is also seen that when the
pulse enters the argon att = 100 and leaves att = 600 there is a small but negligible
change in the energy. This is due to discontinuities in the shape of the argon gas.
When the pulse is inside the gas there is a very small decrease in the energy. This
is due to the lossy behavior of the model [App. L]. In Fig. 3.7.(b) it is shown that
the maximum error in energy conservation decreases with smaller�z .
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4
Modeling THz Emission in Gas

Plasmas

In this chapter, the THz emission in laser-induced gas-plasmas, based on the 1D
�uid model equations presented in Sec. 2, is investigated. The solution of the
model equations is performed with the numerical scheme discussed in Sec. 3, and
results and analysis are presented. First, the focus will be on 1C-laser pulses, after
which 2C-laser pulses will be discussed. Throughout this chapter we are mainly
interested in the e�ciency of the THz generating process and its dependence on
laser parameters. The parameters that produce the highest e�ciency are then of
interest, as well as the extent at which the SSM described in Sec. 2.7 can be used
as a predictive tool for the response of the system.

4.1 Model setup and laser parameters

In the following, the numerical setup and laser parameters are described. The setup
for simulations with 1D �uid model is described here.

Figure 4.1: A typical simulation set-up is shown. A forward propagating laser
pulse is inserted in space, Sec. 3.2.2, and the initial atom density pro�le is setup.
The atom density pro�le is modelled by an exponentially ramped pro�lenat (z) =
nmax (1 � e� 1

10 z), where nmax = 2:7 � 1025 m� 3, App. K. The time trace E(z0; t) is
sampled behind the plasma.

In Fig. 4.1, the simulation setup for the 1D �uid model is shown. The pulse will be
analyzed after it has propagated through the plasma by extracting the time trace,
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4. Modeling THz Emission in Gas Plasmas

Ex (z0; t), at a speci�c point, z0, in space. The boundaries of the simulation window
are considered perfect conductors, meaning that any signal reaching either end will
be re�ected, see Sec. 3.1.1. When the signal reaches the plasma, a portion of it will
be re�ected backwards. Since the boundary is a perfect conductor this re�ection will,
after long enough time, again be re�ected back towards the plasma. The simulation
box is therefore chosen large enough so that any re�ections from the plasma are
unable to interfere with measurements.

4.1.1 Laser de�nitions

In the following simulations, three di�erent laser pulses are considered. Two 1C
laser pulses and one 2C laser pulse. The 1C laser pulses are de�ned as

Esin(t) = EL sin(! L t)e
� t 2

2t 2
0 ; (4.1)

Ecos(t) = EL

"

! L cos(! L t) �
2t
t2
0

sin(! L t)

#

e
� t 2

2t 2
0 ; (4.2)

where EL =
q

2I 0
� 0c is the amplitude of the pulse,! L is the laser frequency andt0

is a characteristic duration of the pulse. The 2C-laser pulse consists of a FH with
frequency� L = ! L=2� and a SH with frequency2� L = ! L=� according to

E(t) = EL

2

4
q

1 � � sin (! L t)e
� t 2

2t 2
0 +

q
� sin (2! L t + � )e

� t 2

t 2
0

3

5 ; (4.3)

whereEL =
q

2I 0
� 0c is the amplitude of the pulse,t0 is the characteristic length of the

pulse, � is the fraction of energy in the SH and� is the relative phase between the
harmonics. Introducing a SH can create an asymmetry in the pulse which greatly
increases the THz generation as discussed in Sec. 2.6.
To reduce the dimensions needed to plot results, it is practical to introduce yields.
The THz yield Y 1D

THz is de�ned as the integral of the power spectrum for the time
trace of Ex (z0; t) over ! = [0; 2� � 30 THz]. For SSM the yield Y SSM

THz is the power
spectrum of the source term integrated up to the same! , such that

Y 1D
THz =

Z 2� �30 THz

0

�
�
� ~E(z0; ! )

�
�
�
2

d!; Y SSM
THz =

Z 2� �30 THz

0

�
� i (! )

�
�2 d!; (4.4)

where ~E(z; ! ) denotes the Fourier transform, de�ned in App. M, of the E-�eld.
To be able to compareYTHz between di�erent laser pulse parameters we de�ne a
laser-to-terahertz e�ciency � THz for the full model and an excitation e�ciency � THz

for the SSM, giving that

� THz =
Y 1D

THz

PL
; � THz =

Y SSM
THz

PLn2
at

; (4.5)

wherePL is the integrated power spectrum for the initial laser used in the simulation,

PL =
Z 1

�1

�
�
� ~EL (! )

�
�
�
2

d!: (4.6)

The excitation e�ciency � THz for SSM in Eq. (4.5) is normalized byn2
at since it is

to be independent ofnat .
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4.2 Measurements, �gures and analysis

In this section, results from simulations are presented and analyzed, starting with
the 1C laser pulses and continuing with the 2C laser pulse. Both results from the
SSM and the 1D �uid model are presented and comared. Also comparison with the
theory establised in Sec. 2.6 is made.

4.2.1 One Color Pulses

The parameter to investigate for 1C ist0. To this end we used the SSM to predict
which values oft0 produce more THz radiation, the results are then followed up
with the 1D �uid model.

Figure 4.2: (a) and (c) show the power spectrum of the source, and (b) and (d) the
laser for the 1C pulse de�ned by Eq. (4.1). The pulse has a power spectrum that
vanish for physically meaningful values oft0.
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Figure 4.3: (a) and (c) show the power spectrum of a pulse that has propagated
through 10� m of argon gas, computed by the 1D Solver. (b) and (d) show the power
spectrum for the initial pulse. The atom density of the gas wasnat = 3 � 1025 m� 3,
and had a gas pro�le with an exponential ramp described in Fig. 4.1. The resolution
was set todz = 0:1 and dt = 0:09.

Power spectrum of the source term using the SSM is presented in Fig. 4.2 for the
1C laser pulse de�ned by Eq. (4.1). The pulse has THz frequency components only
for very low values oft0, below1 fs, seen in Fig. 4.2.(b). However, such a laser �eld
already contains signi�cant THz frequency components, see Fig. 4.2.(d).

The spectrum of the corresponding electric �elds for the 1C laser pulse is also shown.
Only when the laser itself contains THz frequencies can they be observed in the
source term. The only meaningful amount of excitation in this spectrum is gained
with a very low value for t0.

Based on the results of the SSM, short laser pulses were investigated using the 1D
�uid model. The results are presented in Fig. 4.3. At large the �ndings by the 1D
�uid model match those found by the SSM, both indicating that if there isTHz
radiation to be had from a 1C pulse, very small values oft0 need to be used. As
seen in Fig. 4.3.(b) there is noTHz for � > 30 THz contrast to the results from the
SSM shown in Fig. 4.2.(b). This di�erence is due to propagation, which the SSM
can not take into account.

The results from both the SSM and the 1D �uid model show that a 1C laser pulse
is not very e�cient in generating THz radiation. This result is in agreement with
the discussed mechanism of THz generation, in Sec. 2.6. However, some THz yield
is seen for very shortt0. These short laser pulse are hard to create practically and
thus the 1C laser pulse is not useful for creating THz radiation.
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4.2.2 Two Color Pulses

The investigated parameters for the 2C-laser pulse given by Eq. (4.3) are the fraction
of energy in the second harmonic� , the relative phase� , the laser intensity I 0 and
the characteristic pulse durationt0.

4.2.2.1 Investigation of Laser Parameters of the fraction of energy in
SH and the relative phase

Using SSM, the excitation e�ciency � THz was calculated for sweeps over the laser
parameters� and � with di�erent values of I 0 and the samet0 = 15 fs. The degree
of ionization ne=nat of the �nal electron density was also calculated. The result is
presented in Fig. 4.4 left and right column respectively.
Two di�erent regimes are distinguished. One where the ionization degree is nearly
constant for all � and � and full single ionization is reached, seen in (f). For this
regime, the maximum excitation is achieved around� � 0:3, � � 0; � . In the other
regime, the ionization degree is varying over di�erent laser parameters, seen in the
right column except (f). Here, the maximum ofne=nat is achieved for a� � 0:45.
The same parameter sweeps over� and � have been made with the 1D �uid model,
for a constant t0 = 15 fs. The laser pulse is propagated through a3 � m long argon
gas-plasma, and then the time traceE(z0; t) is sampled at another3 � m behind
the plasma. The electron-ion collision frequency for the 1D �uid model was set to
� e = 100 fs� 1 and the electron density tone = 2:7 � 1025 m� 3. The results for the
1D �uid model are presented in Fig. 4.5 and shows a general agreement with the
results for SSM. The 2C laser pulse is propagated through a3 � m long gas plasma.
Pulse duration ist0 = 15 fs, with resolution set to dz = 0:1, dt = 0:099.

4.2.2.2 Discussing the trends seen for the fraction of energy in the SH
and the relative phase

The trend of the optimal parameters for di�erent intensities are explained byne.
Consider the intensity regime where the ionization is dependent on� and � .
For these intensities, the optimal laser parameters for the highest� THz and � THz

tends towards the optimal� for ionizing the gas. The laser pulse with this parameter
has a higher peak amplitude, which is bene�cial for ionization. Such a pulse is
presented in Fig. 4.6.(a). In addition, the net electron drift, discussed in Sec. 2.6,
for near-zero frequency currents is also a�ected by intensity. For lower intensities, the
results indicate that the net electron drift is negligible compared to the ionization as
the optimal parameters tend more strongly toward those that maximize ionization.
The same e�ect is were the optimal parameters for the e�ciency tends towards
� � 0:45 is seen for the higher intensities aswell. The same reasoning that the
down conversion can be neglected can not be applied here since it increases with
intensity. But for the intensities in the regime where the ionization is nearly constant
for di�erent laser parameters, the optimal parameters instead shape the laser pulse
such that the down-conversion of frequencies is maximized. The laser pulse with
these parameters is presented in (b).
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Figure 4.4: In the left column the excitation e�ciency � T Hz for pulses with dif-
ferent intensities I 0 made with the SSM are shown. In the right column are the
corresponding ionization degreesne=nat .
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