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Abstract

In this thesis the THz generation mechanism for laser induced gas plasma is investi-
gated with a fluid model for the laser-plasma interaction. The fluid model is solved
numerically in one dimensional simulations, discretized using the Finite-Di[erknce
Time-Domain (FDTD) method. The numerical scheme was tested and compared to
published results of similar models.

Simulations were then carried out to examine how di[erknt laser pulses aledt the
THz generation. A laser pulse containing only one frequency component was shown
not to generate significant THz radiation, in agreement with the theoretical analysis
also presented in this thesis. For a two-color laser pulse the role of the energy parti-
tioning and the phase shift between the harmonics as optimization parameters were
investigated. It was shown that introducing no phase shift between the harmonics is
the most e Lcieht choice for THz generation, also in agreement with the theoretical
analysis. The results for the energy partitioning showed that about one third of the
energy in the second harmonic is the most e [cieht choice.

In addition, the role of laser intensity was investigated and the simulations showed
that there is an optimal intensity for e [cieht generation of THz radiation in one
dimension. The optimal intensity was shown to be the one that corresponds to the
first order ionization of the gas plasma, meaning that all gas-atoms are ionized once.

Keywords: Plasma, Terahertz, Laser, Laser-Plasma-Interaction, Simulation, Maxwell,
Partial Di[erential Equations, FDTD.
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Sammanfattning pa svenska

Den har rapporten behandlar generering av elektromagnetisk stralning med terha-
hertzfrekvenser (THz-stralning) via laser puls interaktion med ett gas mikroplasman.
Den teoretiska bakgrunden undersdks med syfte att skapa en modell som tar hand
om de viktigaste fenomenen som uppstar nar en tva fargs laser puls av hdg intensitet,
lo = 108W/m?, propagerar genom en langd argongas. Malet ar att undersoka vilka
laserparametrar som kan modulera ner stérst mangd energi ifran laser frekvenserna
till THz-spektrumet.

Terahertzspektrumet stracker sig fran ungefar 300 GHz till 30 THz, dar dagens kallor
har en 1ag e [eHltivitet och dalig bandbredd. Elektromagnetisk stralning i detta
spektrumet har visat sig anvandbar for ett antal olika omraden. Flera molekyler har
karakteristiska svangningsfrekvenser i THz-spektrumet, sa sadan stralning skulle
kunna anvandas for spektroskopi. Dessutom ar stralning i THz-spektrumet inte
skadliga for levande organismer, till skillnad fran réntgenstralning.

Ett lovande sétt att generera THz-stralning sker genom att en mJ-laser joniserar en
gas for att skapa ett plasma. Genom joniseringen kan det ske modulering ned fran
laserfrekvenserna till THz-frekvenserna. Man kan se det som att plasmat agerar som
en antenn med en strom producerad av de fria elektronerna som far en lagfrekvent
komponent genom kopplingen mellan jonisering, elektrondensitet och laserprofilen.

De ekvationer som ingar i modellen sammanfattas som

CXE(r,t) = —0:B(r, 1), (0.1)
CXB(r,t) = 0E(r,t) + J(r, 1), (0.2)
0tJe(r, t) = —VeJe(r, t) + ne(r, )E(r, t), (0.3)
0z (r, 1) = WZ[E(r, OIng  (r £) — W2HHE(r, DG, (r, ©), (0.4)

dar E(r, t) ar det elektriska faltet, B(r, t) ar det magnetiska faltet, J.(r, t) ar strom-
men genererad av fria elektroner, v, ar kollisionsfrekvensen mellan elektroner och
joner, W4[E(r, t)] ar joniseringshastigheten for jonen med laddning Z, ne(r,t) &ar
elektrondensiteten och nZ (r,t) ar densiteten av joner med laddning Z. Ekvation
0.3 harleds med hjalp av Drudemodellen, och joniseringshastigheten W #[E] berak-
nas med Landaumodellen.

Kallan till nedmoduleringen av frekvenser ar produkten i ekvation (0.3) given av
ne(r, t)J(r, t), och kan till viss del matematiskt analyseras for godtyckliga félt. Detta
gors i rapporten, och ett slutligt uttryck for den delen av fria elektronstrémmen Jg
som ar lagfrekvent nog att kunna innehalla komponenter i THz-spektrumet tas fram.
Detta presenteras i ekvation (2.29).

For simulationerna i uppsatsen ar gjorda for en dimension. Falten antas konstanta
i alla riktningar utom propagationsriktningen, har vald i z-riktningen. Falten antas
aven enbart ha komponenter vinkerdta mot z och vara linjart polariserade, sa att
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ekvationssystemet ovan kan reduceras till

0,Ex(z,t) = —3,By(z, 1)
9,By(z,t) = —Ex(z, 1) — Ix(z, )

0tJx(z,1) = —VveJIx(z,t) + Ne(z, t)Ex(z, 1) (0.5)
0:nZ(z,t) = W4 [Ex(z, )InF1(z,t) — W2 E(z, D)]n? (2, 1).

En forenklad modell som betraktar frekvensspektrumet av kallan till nedmodulerin-
gen, Je, undersoks ocksa. Denna kallan berattar inte om utsand THz-stralning,
utan endast om vilka frekvenser som kallan innehaller. Eftersom THz-frekvenserna
som genereras ar kopplad till vilka frekvenser som kéllan innehaller kan denna mod-
ellen anvandas for att forutspa monster som sedan kan undersokas med rigorost.
Den férenklade kallmodellen tar inte hansyn till propagation.

For att losa ekvationssystemet (0.1)-(0.4) anvénds diskretiseringsmetoden Finite-
DiLerence Time-Domain. Med hjalp av denna delas rum och tid upp i N¢ %< N, ek-
vidistanta punkter for varje storhet, med temporalt avstand &t och rumsligt avstand
0z, sa att den totala langden som simuleras ges av AZ = N,8z och den totala tiden
ges av AT = Ndt. For att diskretisera storheterna anvands en symmetrisk approx-
imation av derivatan av en funktion, given av

of(x) _ F(x+ %) —F(x— %)

2
Ox 5x O,

dar O(6x?) ar en restterm som gar mot 0 som kvadraten av argumentet. Om vardet
pa en storhet behdvs i en punkt dar den inte &r diskretiserad explicit anvands en
linjar interpolation mellan de nérliggande vardena, sa att

F(x— 29+ F(x + )

2
. + O(3x2).

)=

Med dessa approximationer kan ett system sattas upp sa att storheterna kan losas
for alla punkter i rummet i en tidpunkt som funktion endast av tidigare tidpunkter.
Dessa kan sedan anvandas for att berédkna alla punkter i rummet i nésta tidpunkt.
Denna metoden beskrivs grafiskt i figur 3.1.

Laserpulserna &r definierade utifran dess elektriska falt. En- och tvafargslaserpulser
har anvants i simuleringarna. Enfargslasern som har anvénts ges av uttrycket
_12

212

Esin(t) = ELsin(w_ t)e %,
1
dar E. = % ar amplituden av laser, w_ = i—f ar laserns vinkelfrekvens, A, =
800 nm é&r laserns vaglangd och t, ar en karakteristisk pulstid for lasern. For en-
fargslasern undersoktes parametern ty i syfte att maximera andelen energi i THz-
spektrumet.



Tva olika tvafargslasrar har anvants, som ges av

(s s I 1 L1 2
Ern(t) =EL 1 —&sin(w )+ &sin(Ru t+¢) e (0.6)
1 1
1 _ 2 1 12

Enar(t) =E, TN — Esin(w t)e 2% + EsinRut+@)e T (0.7)

dar amplituden, vinkelfrekvensen och den karaktéristiska pulstiden &r samma som
for enféargslasern ovan, @ ar forsta évertonens fasforskjutning och & ar andelen energi
som fordelas till forsta 6vertonen. Skillnaden mellan de tva olika lasrarna ar att Ez,
har samma karaktaristiska pulstid for bade grundfrekvensen och forsta Gvertonen,
medan Ey¢ har halva pulstiden for forsta 6vertonen jamfort med grundfrekvensen.
For tvafargslasern har parametrarna &, ¢ och Iy undersokts for att maximera THz-
stralning. Valet av & och @ paverkar laserpulsens form. Skillnaden tydliggors i figur
4.6.

For enfargslasern kunde resultat presenteras som pavisade att den inte kan produc-
era nagon meningsfull mangd THz-stralning for nagot varde pa to, utom for mycket
laga varden, t; < 1fs som skapar pulser som &r svara att generera i verkligheten.

Detta beteendet &r ocksa nagot som kunde forutspas i forvag, i enighet med diskus-
sioner om den primara kallan till THz-stralning.

For tvafargslasern delas resultaten upp i tva regioner som karaktériseras av vilken
intensitet 1, som lasern har. Argongas bestar av enatomig argon, och varje atom
omges av 18 bundna elektroner. Med tillrackligt stark intensitet skulle gasen darfor
kunna joniseras 18 ganger.

Amplituden av laserfaltets extrempunkter &r starkt kopplat till hur mycket som
joniseras, som i sin tur paverkar hur mycket THz-stralning som skapas. For en
allméan intensitet kommer gasen joniseras olika mycket for olika val av § och ¢ efter-
som dessa parametrar paverkar hur hog amplitud extrempunkterna har. For denna
region ar alltsa joniseringsgraden en viktigt bidragsfaktor till THz-stralningen, och
maximumen av THz-stralningen mot & = 0.5, ¢ = /2. For vissa intensiteter jonis-
eras hela gasen till en och samma grad, oavsett vad & och ¢ &r satta till. FOr dessa
intensiteter tenderar { = 0.3, @ = 0 att ge storst andel energi i THz-spektrumet.
Utav de intensiteter som kunde undersdkas inom modellen fanns sadanna inten-
siteter som joniserade som mest tre ganger med i intervallet. Av dessa hade den
intensiteten som joniserade precis en gang hogst e [eRtivitet.

Sammanfattningsvis har en modell Gver en- och tvafargslasers propagation genom en
argongas modellerats. Modellen tar hansyn till till exempel férandringar i elektro-
magnetiska falt, jonisering och kollisioner mellan elektroner och joner. Enfargslasern
ser ut att vara for ine [eRtiv for att anvandas som THz-kalla. Tvafargslasern ar som
mest e [eRtiv for intensiteten 1, = 4 - 108 W/m? med laserparametrarna & = 0.3,
¢ =0.
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Introduction

The Terahertz (THz) spectrum corresponds to electromagnetic waves with frequen-
cies between 300 GHz and 30 THz, an interval which eludes most contemporary
sources of electromagnetic radiation. This is known as the THz gap. THz radia-
tion has been shown to be useful within several di erent areas. For example many
molecules have a characteristic spectrum in the THz region, making THz generating
sources useful for spectroscopy [1]. In medical applications the strong interaction
between THz radiation and polar molecules, such as water molecules, is exploited
and detection of diseases such as breast and skin cancer is possible [2]. In addition
it is harmless to living organisms in contrast to X-rays [3]. THz radiation can pen-
etrate materials such as polymers, papers and textiles, a property that can be used
to monitor industrial processes. It is for instance possible to measure the thickness
of drug coatings [4].
Conventional THz sources exist, but unfortunately they su er from di erent dis-
advantages. Many of them are sourced by a mJ-lasewhich severely limits their
availability and compactness. A property that none of the conventional sources have
achieved is to produce a signal with a broad enough bandwidth to cover the whole
THz spectrum and take full advantage of its unique characteristics. The largest
bandwidth that is obtained today by established THz sources comes from di erence
frequency generation (DFG) or optical recti cation (OR). They can produce a band-
width of about 8-10 THz but are limited to either end of the THz spectrum.
DFG can only generate a signal with higher frequencies in the THz frequency range,
ore > 10THz, while OR generates signals with frequencies in the lower range
0:3THz < or < 8 THz [5].
In 1994 [6] the rst experiments showed that it was possible to create THz radiation
by inducing a plasma in a gas with high intensity laser pulses. This new source
showed a potential to Il the THz gap by delivering a signal with a bandwidth broad
enough to cover the entire THz spectrum. But to compete with the conventional
THz sources the laser-to-THz e ciency, t4,, needed to be further improved. A
decade later, 2008, the technique of inducing the plasma with a two-color laser
pulse was presented. Kim, Taylor, Glownia and Rodriguez[7] achieved @y, Iin
their experiment, greater by a factor1(* when compared to a single color laser
induced plasma and they created a signal with 75 THz generated with a mJ-
laser. The principle of a two-color laser is to create a second harmonic (SH) to
the fundamental harmonic (FH) by rst propagating a single color beam through
a non-linear @ crystal. The electromagnetic eld that ionizes the gas will then

mJ-laser is a laser that can generate a laser-pulse with a energy in the mJ-range.
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1. Introduction

consist of two modes.

The THz generation can be thought in terms of the plasma acting like a small
antenna where the emission is driven by the plasma curredt(r;t). To achieve a
THz yield there must be a down conversion from the laser frequencies to the THz
frequencies. This is made possible by a non-linear interaction between the electric
eld, E(r;t), and the free electron densityne(r;t) [8]. Therefore, the mechanism
by which the laser ionizes the gas to create the free electromg(r;t), is crucial for
THz generation. A simpli ed illustration of the THz generation by a laser induced
gas plasma is seen in Fig. 1.1.

LCMORERILS

E(r;t) Plasma Je(r;t) THz

| ra—

Figure 1.1: An electric eld E(r;t) ionizes the argon gas thus creating a gas plasma.
The ionized electrons are then accelerated ly(r;t) and thus generating a current
J(r;t). The purpose of this thesis is to show how &(r;t) can be created such that
it contains the desired THz-frequencies.

The typical 1, for two-color (2C) laser induced plasmais 10 #, which is still too
low [9]. However, the promise of delivering a THz signal that covers the entire THz
spectrum makes the 2C-laser a desired technique. To make further improvements
to the technique, more research has to be done on the parameters that a ect the
yield and spectrum of the THz radiation. In a study from 2010 [8], the THz spectral
amplitude and width were shown to depend on the pressure of the ionized gas. In
another study [7] there were also indications that the phase shift between the FH
and the SH in a two-color laser has a signi cant impact on the THz radiation.

The goal with this thesis is to investigate the generation of THz radiation via laser-
plasma interaction. The di erent laser parameters are studied and their e ect on the
amount of THz radiation produced via ionization of argon gas is analyzed. In the
next chapter, Physical Background, the equations that govern the most important
phenomena of laser-plasma interaction are de ned, and limits of the regimes are
discussed. In Numerics, the system of equations is discretized, the solution grid
is de ned and the solver is tested and validated. In Modeling, the simulation and
laser parameters are set up, optimal parameters for the 1C and 2C-laser pulses
are presented and its behaviour is analyzed. The nal chapter concludes the most
important results and summarises the path to obtain them.
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Physical Background

In this chapter, the physical background for modelling terahertz (THz) generation by
laser induced gas plasmas is presented. The equations that govern the most impor-
tant e ects in the laser-plasma interaction, such as laser propagation, ionization and
material response are discussed. The limits of the model are also de ned and core
of the mechanism responsible for generating THz radiation is pointed out. Finally
a simpli ed model which can be used to nd promising parameters to maximize the
THz yield is presented.

2.1 Maxwell's Equations

To model the propagation of the laser pulse in a gas and the propagation of the
THz radiation, it is necessary to employ the Maxwell's equations. For the system
described in this thesis, they reatf

r E(r;t)= (r;t); (2.1)
0

r B(r;t)=0; (2.2)

ro E(rt)= @B(r;t); (2.3)

ro B(rt)= Clz@E(r;t)+ oJde(r;t); (2.4)

where E(r;t) is the electric eld, (r;t) is the charge density, o is the electric
permittivity, B(r;t) the magnetic eld, c is the speed of light, o is the vacuum
permeability, and J¢(r;t) is the free electron current. The bound electron response
is neglected in this model. While Maxwell's equations form the basis for the de-
scription of electromagnetic eld propagation and provide the link between the free
electron current of the plasma and the electromagnetic elds, they do not describe
the material response of the plasma. For this, a model of the response is presented
in the following section.

2.2 The Physics of the Drude model

In order to couple the free electron currend¢(r;t) to the electromagnetic elds, an
additional expression is needed to describe the current produced by electrons that

1Bold faced characters,A denotes vectors and bold faced characters with ha® denotes unit
vectors.

r = @;@;@



2. Physical Background

are created when an electric eld ionizes a gas to create a plasma. The free electron
current is created through the motion of charged particles. In this model, ions are
considered to be stationary, and thus the current depends solely on the speed of the
free electrons as well as the electron density and their charge. As ionization has
to be taken into account, electrons are considered to contribute to the free electron
current Je(r;t) only after the time of ionization t;. Then, the free electron current
can be written as [8]

Zt
Je(r;t) = o . v(r;tt) @ne(r;ti) dt; (2.5)

whereq is the elementary chargey(r;t;t;) is the velocity for the electrons born at

a time point t;, @ne(r;t;) is the change of the electron density at the tim¢;. Note
that the derivative is taken with respect tot;.

To nd an expression for the speed of the electrons, consider the Lorentz force on
a single electron with the chargeg in an electric eld E(r;t) and magnetic eld
B(r;t). In App. A. it is shown that for electrons velocities that are much smaller
then the speed of light, the magnetic term in the Lorentz force can be neglected,
and the force reduces to

F(r;t)= g E(r;t)+ v(r;tt;)) B(r;t)  GE(r;t):

Moreover, to account for collisions of the free electron current with other electrons or
ions, a phenomenological constant damping term is introduced such that Newton's
second law of motion for an electron in such an electric eld reads

F(r;t) = me@v(r;t;t;) = GE(r;t) eMev(r;t;t;) (2.6)
L@t = FECY w0t (2.7)

where . is the collision frequency. Electrons are considered as a density, not speci c
electrons. As such, the electric eld does not depend on electron position, only on the
electric eld at r. This equation can be solved to determing(r;t;t;). Integrating
from the time t;, when the electron is born, to the current timet, one nds an
expression for the velocity of the electron given by
Z t
v(r;tt;) = & E(r; )e <t )d; (2.8)
Me
where the speed of an electron at the time of ionization is assumed to be 0. This
speed is true for one electron, and the Drude model provides an expression to cal-
culate a macroscopic plasma current from a microscopic model of a single electron.
Eq. (2.8) is substituted into Eqg. (2.5) and yields, after some algebraic manipulation
[App. B,
&
@+ Jr)= —ne(rHE(r:1): (2.9)
e
Finally, an equation relating the electron density to the electric eld is to be deter-
mined.



2. Physical Background

2.3 The Physics of the Plasma Generation

To generate a plasma from an initially neutral argon gas, the atoms need to be
ionized, that is bound electrons have to escape the atom. The ionization is achieved
by the interaction of the gas with an intense laser pulse.

The Keldysh theory is a well established theory describing ionization, from which
conditions for di erent ionization regimes depending on the intensity and frequency
of the electromagnetic eld are extracted [10]. Keldysh's theory is valid for elds
with intensity | << | 5 and frequency! << ! 4 wherely 3 10° Wm 2 and
l« 4 10 s !is of atomic dimensions [App. C].

According to Keldysh's theory an EM- eld can ionize atoms in a gas in two dif-
ferent ways. For a relatively weak eld, the mechanism is that of multiphoton
ionization® and for a relatively strong eld tunneling ionization is dominant. The
relative strength of an EM- eld is determined by the Keldysh parameter [10]

q
! 2mejEIj
= —; 2.10
GE (2.10)
where! is the frequency of the eld,E is the amplitude of the eld and E, is the
lonization energy, which in this thesis is the ionization energy of argon equal to

1576 eV [11]. For > 1the eld is considered weak and if < 1t is strong [10].

Figure 2.1: In the gure the total potential as a function of distance from the
nucleusr, whereV, is the potential created by an external laser pulséyc is the

Coulomb potential from the nucleus andE, is the energy of the bound electron.
Total potential is given as the di erence ofVc and V_. Tunneling is possible through
the potential barrier visible on the right side of the gure.

The binding energy of an electron depends on the Coulomb potential of the nucleus,
Vc, shown as the blue dashed-dotted line in Fig. 2.1V¢ yields an attractive force
on the electron that is inversely proportional to the distance from the nucleus.
With the electric eld from a laser, E_, it is possible to change the potential so that

it becomes the di erence betweeV: andV_, seen in Fig. 2.1 as the black solid line.
The created barrier implies the possibility for the electron to tunnel and escape the

3nice reading about multiphoton ionization in N. B. Delone and V. P. Krainov, Multiphoton
Processes (Springer, New York, 1985)



2. Physical Background

atom. The probability for an electron to tunnel increases with time given a constant
potential barrier, and it also increases the smaller the potential barrier is. For an
oscillating eld this potential barrier only exists for a limited time proportional

to half the period of the eld, thus the tunneling rate depends on the period and
amplitude of the oscillating eld. When the period of the eld is long enough and
the amplitude su ciently high for e cient tunneling to occur the eld is considered
strong and << 1[10].

In this thesis elds corresponding to 1, e.i. the tunneling regime, will be
considered and a static model of the tunneling ionization is used according to a

model derived by Landau [12]. The model expresses the ionization rat&* as
I 0 1

. _ = Eat 2(rH)S:ZEat .
WZE(r; )] = 4! 4(rn)>? JE(r: D] WA’

(2.11)

where! 5 4 10s ! is the same as above an&, 5 10, see App. C,
and E(r;t) is the electric eld. The factor ry depends on the atom to be ionized.
Argon has, for instance, 18 electrons and could therefore in principle be ionized 18
times. The ry -factor therefore readsryy = EZ=E, whereEZ is the Zth order of
ionization energy for argon andEy is the ionization energy of hydrogen. In App.
D all ionization energies for argon are listed. In Fig. 2.2.(a)W? is seen an a
function of the intensity of the E- eld, 1o, for the rst three orders of ionization.
W< is exponentially increasing for all orders of ionization but with critical points
at higher intensities for higher the order of ionization. The exponential increase of
W?4 makes a oscillating eld only ionize a considerable amount of electrons around
the maximum or minimum of it is oscillation. This makes the increase of electron
density have a steplike increase, this will be shown to be crucial for the generating
THz-frequencies by this model. The steplike increase can be seen in Fig. 2.2.(b).

Figure 2.2: In (a) the ionization rate W# for the rst three orders of ionization

in argon gas. The horizontal dashed line marke/? = 0:1. The vertical dashed
lines marks critical intensities for when the rate of ionization is equal to 0.1 for rst,
second and third order of ionization respectively. In (b) the steplike increase when
ionized by a laser pulse.ty corresponds to maxima ok, that give W[E,] > 0:1.
This steplike increase is shown in Sec. 2.6 to have a crucial role in THz-genration.

When considering a gas with an atomic numbeK it is possible to ionize all theK
electrons bound to the nucleus. To take every species of ions into account the rate

v



2. Physical Background

equation for the ion density of orderZ > 1; Z <K is
on(ri) = WZIE(r; Ing, H(rit) - W E(r; )Ing, (r;t); (2.12)

where nZ is the density of ions with chargeZ. The rst term WZ[E(r;t)]n%, !
corresponds to the rate that a lower order of ion& 1 become ionized and the
second termWZ*1[E(r;t)]nZ,, is the rate of events leading to ionization o -times

charged ions, leading to creation o + 1-times charged ions. Note than?  is the
density of neutral atoms and thusw® = 0. Also WX *! =0 since it is only possible

to ionize K times. The electron densityng(r;t) follows from the quasineutrality as

ne(r;t) = * zZnZ (r;t): (2.13)
Z

and n?

(t= 1 )= ng whereng is the density of argon atoms.

2.4 Summarizing the Full Model in 1D with Plasma
Units

The full model to simulate the THz generation in this thesis consists of Maxwell's
curl equations coupled to the macroscopic current equation Eq. (2.9) and the ion
rate equations Eq. (2.12),(2.13). In plasma units, de ned in App. E, the system of
equations for the full modet is

ro E(t)y= @B(rt),; (2.14)
ro B(rit)= @E(r;t)+ Je(r;t); (2.15)
@e(r;t) = eJe(rit) + ne(r; )E(r;t); (2.16)
@Z(r;t) = WZ[E(r;0)In3, 2 (r;t)  W2HE(r;)Ing, (r;1): (2.17)

For the simulation in 1D all elds are assumed to be constant in all but the direction
for the laser propagation, here chosen to be thedirection, which implies that

@E(r;t) = @QE(r;t)= @B(r;t)= @B(r;t)=0: (2.18)
Any eld A will further be seen as functions of only
A(r;t)! A(z;t); (2.19)
From Faraday's and Ampere's law, Eq. (2.14),(2.15), one obtains the set of equations

(2:14)! R 1 @Ey(z;t) = @B«(z;1);
¥ @Ex(z;t) = @By(z;1);

(2:15)! ' @By(z:t) = @Ex(z;t)+ Jx(z;1);
§ : @Bx(z;1) = @Ey(z;1) + Jy(z;1):

4Gauss law, Eq. (2.1), and the equation for the divergence oB, Eq. (2.2), are not solved
explicitly, since solving the curl equations implicitly solves them.

8



2. Physical Background

These can be arrange into two sets of equations as
8 8

SR1O@Ey(zi) = @Bx(z1) SR @By(z:t) = @Ex(z;t) + Ix(z:1)
- Y1 @Bx(z;t) = @Ey(z;t)+ Jy(z;t) -9 @Ex(z;t) = @By(z:1):

(2.20)

These are two decoupled sets of equationd, depends only onE, and Jy only on
Ey. In this thesis, only linearly polarized elds are considered. Thus, for the 1D
Solver, the elds are set such thatE = E,X, B = By and Je = J,R. With this
choice, Eg. (2.16) and (2.17) reads

@y (z;t) = edx(Z; 1) + ne(z; )Ex(2;1);
@ion(Z:1) = W2E(Z: D], H(231) - W™ [Bx(Z3 D]nin (2;1);

respectively. Summarizing all the equations that are used to simulate the laser-
plasma interaction in 1D gives the equation system

@Ex(z;t) =  @By(z;1); (2.21)
@By(z;t) =  @Ex(z;t) Ju(z:1); (2.22)
@ (z;1) = &Ix(Z:1) + ne(z;)Ex(z;1); (2.23)
@7 (z;1) = W2[Ex(z;D)In5, 1 (z;1)  W2HEL(z;D)]nZ, (z;1); (2.24)

where the rate equation Eq. (2.24) needs to be solved for every ordeof ions that
are considered.

2.5 Valid Laser Intensities and Frequencies

The laser wavelength which is considered in this thesis is =2 c=! | = 800 nm.
This gives a range of laser intensitiek, = [10%8; 10?°°] Wm 2 for which the model is
valid. The lower bound is set by the Keldysh parameter, wherel, = 10® Wm 2
corresponds to 1:148 according to Eq. (2.10). The upper bound set to ensure
that the magnetic force contribution from the Lorentz force(v  B), is negligible,
that is when the velocities for the electrons in the plasma are much smaller then the
speed of light. The maximum electron velocityvmax, in an oscillating E- eld can
be approximated, see App. F, as

GEL
me! L '

Vmax -

(2.25)

The upper bound in this thesis is then set to the intensityl o = 102° Wm 2 which
gives maximum electron velocity oWnax ~ 0:06&c.

2.6 Frequency down conversion via lonization Cur-
rent

The laser-plasma interaction in this model is encapsulated in the current Eq. (2.23).
All frequencies produced in the interaction results from the non-linear term that

9



2. Physical Background

involves the product betweemeg(z;t) and E,(z;t). Since this is the only source of
frequency mixing, it is crucial that this product creates a down conversion to near-
zero, i.e. THz, frequencies. The discussion in this section is for a xed point in
space, hence the spatial dependency is omitted for simplicity.

Figure 2.3: The gure shows the frequency spectrum of botE(! ) and the electron
density re(! ) produced by ionization, for a xed point in space. In (a) a one-color
laser pulse usedE (t) / sin(! .t), respectively for (b) a two-color laser pulse is
used,E (t) / sin(! .t) +sin(2! . t).

In Fig. 2.3.(a) the frequency spectrum oE,(t) and corresponding frequency spec-
trum of ne is shown for the simplest laser pulse, a one-color (1C) laser pulse. This
pulse consists of only one harmonic oscillating with the laser frequenty, that is
EL(t) / sin(! . t). In Fig. 2.3.(b) the same quantities are shown for a laser pulse
with two harmonics, a two-color laser pulse (2C). The fundamental harmonic (FH)
oscillates with! | and the second harmonic (SH) oscillates with two times the laser
frequency such thatE, (t) / sin(' . t) +sin(2! . t). It is seen that in the 1C-case
the laser pulse has a peak alt; and the electron density at two times the laser
frequency,2! | . This is because the electron density increases whenever the electric
eld has a maximum or a minimum, seen in Fig. 2.1.(a). Using the trigonometric
identity for a product between two harmonics with di erent frequencies according
to

2sin( t)sin(! ot) =cos[(! 1 !)t] cos[l 1+ ! )t]; (2.26)
with ', =1, and!, =2!, gives the following expression for the 1C-laser pulse
2sin(! Lt)sin(2! (t) =cos( ! t) cos(3 .t): (2.27)

It is clear that no down conversion from! | has occurred. The rst term is just a
harmonic oscillating with the laser frequency again, and the second term a harmonic
oscillating with three times the laser frequency. Thus it can be predicted that no
signi cant amount of THz radiation will be generated by a 1C-laser pulse. But, in
the general case, there is a potential to create low frequencies from the rst term in
Eq. (2.26). Forinstance in the 2C-case, seen in Fig. 2.3.(b), the frequency spectrum
of Ex(t) has peaks att | and 2! | while the frequency spectrum of¢(t) has peaks
at several di erent frequencies, including frequencies close to thoseEf(t). This

10



2. Physical Background

means that there are possibilities to obtain down conversion from Eq. (2.26) because
the di erence between! ; and! , can be small or even zero for certain harmonics in
Ex(t) and ng(t).
The above prediction for the down conversion are made by only considering the non-
linear product of E«(t) and ne(t). Now instead consider the full model, for which
low frequency components are needed in the free electron currdgft) to produce
THz emission.
Low frequencies are created by a net gain of electron velocity in one direction. This
drift implies that, if collisions are neglected, whert ' 1, J4(t) is not equal to zero.
A laser pulse that does not accelerate electrons symmetrically in both direction is
then required. From Eqg. (2.5) the following expression fad,(t) can be derived as
[App. G.]

X z tk

()= ne(ti)H(t 1) . Ex()d; (2.28)
k

where ty is the time of every ionization event, i.e. the times wher&, has an
extremum. The steplike increase of th@. at ti is visualized in Fig. 2.1.(b). ne(tk)
Is the electron density at that time and Ht ty) is the Heaviside function.

For a 1C-laser pulseE, will have componentsE, / sin(! . t)°> and Eq. (2.28) gives

X cos( .t
Il ne(t)H( tk)IQLLk):
) !

(2.29)

Sincecos( | tx) is zero whenevesin(! | ty) is at an extremum, i.e. when the ioniza-
tion occurs,J, is zero. However, for a short pulse the envelopean not be neglected
and Eqg. (2.28) might give nonzero values.
Consider now a 2C-laser pulse, such that

E.t)y/ 1 sin( Lt)+q*sin(2! ) (2.30)

where! | ;2! | is the frequency of the FH and SH respectively, is the fraction of
energy in the FH and is the relative phase between the FH and SH. For this pulse
Eq. (2.28) becomes
Op__ p_ 1
X 1 ! 2 +
37 nton ry @t oSt o CoslBLhT ),
k - L S L

(2.31)

This can certainly be nonzero because of the phase shift To maximize J., and
thus the slow component ofl, responsible for the THz frequencies, di erent and

will be investigated. In Fig. 2.4.(a) a 1C-laser pulse is shown not to create a
o set in the current according to Eq. (2.29) whent ! 1 whereas 2C-laser pulse
in Fig. 2.4.(b) does create the o set needed for the down conversion to near-zero
frequencies by Eq. (2.30).

Sfor simplicity the envelope is neglected here, see App. G for details

t
8All envelopes in this thesis are a gaussian function with the forme 2%, weret is characteristic
duration for the laser pulse.
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Figure 2.4: The time trace shown in gure (a) and (b) are extracted from a spatial
point inside a gas plasma. The laser pulses have the wavelengith= 800 nm, a

gaussian envelope with the characteristic pulse duratiomg = 7 fs, and for the 2C-

laser in (b) the laser parameters =0:3and =0 in Eq. (2.30). In (a) a 1C-laser
pulse is shown that it does not create an o set inly, Eq. (2.28). For a 2C-laser
pulse, shown in (b) there is a slight o set inJ, after the pulse. This is the driving

mechanism of the THz-generation in this model.

2.7 Simple source model, SSM

As argued above in Sec. 2.6 the frequency down conversion stems from the particular
time dependence of the product oE,(z;t) and ne(z;t). Examining the frequency
components of the termng(z;t); Ex(z;t) gives a more exible way to predict the
THz-yield. If collisions are neglected, Eq. (2.16) becomes

@Ix(z;1) = ne(z; Y)Ex(z;1); (2.32)

where theE - eld can be decomposed into the vacuum eld from the laseE, (z;t)
and the eld created by the excitation of the plasmaE(z;1),

@y (z;t) = ne EL(z;t)+ E(z;1) (2.33)

Since the eld from the laser is the driving part of the current, for simplicity one
can consider the source term

I = ne(z;)EL(zZ;1): (2.34)

The simple source model (SSM) is introduced where the source terns calculated
with the time trail of a prescribed eld E| (zp;t) in one point of space ande(zo;t)

is calculated using Eqg. (2.24) at that point. The benet of the SSM is that the
simulations do not require propagating the EM- elds, sincee (t) is considered to
be known and the code is thus much faster than when solving the full set of equations.
Since the simulations with SSM are much faster, they can be very e ciently used to
nd interesting trends and then con rm them with the 1D Solver. SSM is limited

to a single point in space, and e ects of propagation are neglected.
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3

Numerical methods

With the physical background established in the previous chapter, the next step
Is to translate the equations into discrete versions which are to be solved by com-
puters. To this end, the Finite-Di erence Time-Domain (FDTD) method is intro-
duced and applied. The Yee-scheme is established to specify the order in which
the equations must be solved. The numerical solutions are then compared to some
analytic solutions. The dispersion relation is derived for a plasma and then the
dispersion in the code is calculated compared to analytic values. Moreover, en-
ergy conservation and dispersion properties of the solver are analyzed. The con-
vergence of the code is shown with respect to the energy, dispersion relation and
the frequency spectrum for the parameter sweeps done in the result part of the
thesis, see App. H. The frequency spectrum from the simulations by this code is
also compared to published results made with a similar model, the dierent fre-
quency spectra are shown in App. |. The implementation can be downloaded at
https://github.com/erikadamstrandberg/ TERAHERTZGENERATION

3.1 Discretization using the Finite-Di erence Time-
Domain method

In order to solve Egs. (2.21)-(2.24) foE,(z;1); By(z;1); Ix(z; t), ne(z; t) and nZ, (z; 1),
each eld has space and time discretized intdl, N equidistant points with the
temporal distance t and spatial distance z. The total length of the simulation is

Z = N, z, and the total time of the simulationis T = N; t. To solve the equa-
tions the FDTD [13] method is used. This is a well established method for solving
electrodynamic problems. It is with a known dispersion relation for the Maxwell
equations and
Using Taylor expansions forf (x+ x) andf(x x), the derivative of any di eren-
tiable function f (x) can be approximated as [13]

@x) _f(x+%) f(x %)
@x X

where O( x 2) is shorthand notation for the remainder term, which approaches zero

as the square of the argument, giving an accurate expression for a su ciently small

X.

In addition, linear interpolations between two discrete points are de ned as

fix )+ fx+3)
2

+0(x?); (3.1)

f(x)= + O(x?): (3.2)
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3. Numerical methods

Both the approximations above, used throughout the discretization, have a second
order error term.

t

i+ 1L A/D ® A/D o A/D ®

H-:
. =B
R O O @

A:ne’nﬁ)n

]=2

1+ A @ A @ A @

Figure 3.1: The discrete grid where the di erent quantities are approximated. Ac-
cording to this schemeE takes turn with B;J; ne to be solved for all spatial points
to evolve the simulation forward in time by the update Eqgs. (3.5)-(3.8). Note the
shift of t=2 and z=2 in the discretization of time and space for the di erent elds.

3.1.1 Discretizing the Maxwell curl equations

The discretization of Maxwell's curl equations Eqg. (2.21) and (2.22) by Eq. (3.1)
introduces a shift in space and time byz=2 and t=2 for Ex(z;t); By(z;t) that can

be seen in Fig. 3.1. This way of discretizing (z;t); B(z;t) by shifting the elds a

half step with respect to each other is called a Yee-scheme or a leap-frog scheme [13].
For the sake of brevity a continuous functionA(z;t) will be abbreviated with z, =
pzandty=qt

A(zpt)) = A(pz;qt) = Al p;d2 R (3.3)

Steps in the di erent discrete grids for the elds are denoted by the integerk for
spatial steps andi for temporal steps, this can again be seen in Fig. 3.1,

k=0;1:: Ny, 1=0;1 N (3.4)

Using the approximation of Eq. (3.1), the Maxwell's equation can be discretized as

N[

L |
By =B, Ey 1 (3.5)

NIFE N

. . i +
Etvr = Bl By t,,

(3.6)
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. i+ L
With these two equationsk,, . ; B|': 2 are explicitly solved in time, meaning that to
2

be solved for a specic time stept; the elds only need to be known for previous
time stepst <t ;. With Eq. (3.5),(3.6) the E; B - elds can take turn being updated
for all spatial points moving the simulation forward in time, for this reason they are
called update equations.

The Yee-scheme for updating the EM- elds does a second order error for the choice
length in spatial and temporal stepz; t from Eq. (3.1).

Also note that this shift in space means that to calculate a solution for th&; B -
eld for a spatial point with index k the respective eld needs to be known at the
neighboring pointsk + %; k % This means that the boundary of the simulation
window can not be solved by the update equations Eq. (3.5),(3.6) and instead
needs to be set to ful Il some boundary condition. For the simulations in this thesis
E{ = EL = 0 which corresponds to the edges of the simulation window being perfect
conductors.

3.1.2 Discretizing the ionzation rate equation and the cur-
rent equation.

When coupling the current and plasma equation to the Maxwell's equations, there
is a choice on how to discretize the curreni,(z;t) and the electron and ion density
Ne(z;t);n%,(z;t). Equation (3.6) enforces thatJs(z;t) is discretized at the same
spatial step asE4(z;t), but shifted in time by t=2. The electron and ion density
Ne(z;t); nZ,,(z;1) can be discretized freely, but it should be done so to keep the second
order accuracy of the scheme. Hem,(z;t); n%, (z;t) is discretized like the current
J«(z;1). A bene t from this choice of discretization ofne(z;t); nZ,(z;t) and Jx(z;t)

is that ne(z;t); nZ,(z;t) are the only solutions that need to be saved for more than
one time step, which makes the computation use less memory. The discretization of
Jx(z;1) and ng(z;t); nZ,,(z;1) is visualized in Fig. 3.1.

Using Egs. (3.1),(3.2) to discretize Egs. (2.23),(2.24) gives

sl L1 A
t 9" 32 t I*+3 I3 i
i+ 1 1 < J,it 5 (Ne),.,2+(ne) .3 Ep s
i+ k k k K
J7e = 2 2 2 2 (37)
k+l_ ] .
2 1+ ezt
|
i1 01 L1
1 SWZHE ] nZ, 2+ IWZEL L] ndt 2+ ngt R
i+1 2 k+% ion 41 2 k+% ion .1 ion 41
z 2 2 2 2
ion 1
k+ >
2

L+ fW2H[E], ]
(3.8)

Note that these update equations di er from the discretization of the Maxwell's
equations in the sense that they do not only depend on the elds from previous time

i+ L
steps. The update equation for the current]i'(:i depends on the electron density
2

i+ 1 . . i+ 1 i+1
(ne)::j% and the ion density nZ. :(f% depends on nZ,* :HZ% both are dependent
on solutions of the elds at the same time step. This means that it is rst required
to solve the ion densities from the lowest order of ionization to the highest, update
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the electron densityne(z;t) and then solve for the currentl,(z;t) to update a time
step for Jx(z;1); ne(z; t) and nZ, (z;1).

3.2 Validating the numerical scheme

The code, created to solve the discretized system discussed above, is tested in dif-
ferent ways to ensure it is working correctly. Either, if possible, simpli cations have
been made to achieve analytic solutions to compare with, or the code has been
benchmarked to published results. The Egs. (2.21) and (2.22) have been compared
with analytic solutions in the special case of an electromagnetic wave in vacuum.
Then the dispersion, when propagating in plasma, has been compared with cal-
culations of the analytic dispersion relation in plasma. Also Eq. (2.23) has been
compared with analytic solutions. The code solving Eq. (2.24) has been compared
with published results.

3.2.1 Principle for testing the Maxwell solver in vacuum

To check that the discretization of Maxwell's Egs. (2.21) and (2.22) are correct,
they are considered in vacuumJy(z;t) = 0. In vacuum they are equivalent to two
wave equations, one for thés - eld and one for the B- eld

@Ex(z;t) @Ex(z;t)=0; @By(z;t) @By(z;t)=0;

which have the solutions

Ex(z;)=f(z D+9(z+1); By(z;)=1f(z t) gz+1): (3.9)

The functionsf (z t) and g(z + t) are forward respectively backward propagating
waves along thez-axis and represent a rigid pro le that is propagating with the speed
v = 1. The sign di erence ing(z+ t) comes from requiring that the solutions satisfy
Eqg. (2.21).
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2
Figure 3.2: In (), an initial condition E,(t) = Egcos( . t)e 28 and B, = 0 has
been set up. In (b) both the forward and backwards solution to the wave equations
Eq. (3.9) can be seen. They keep their rigid pro le and the backwards propagating
solution g(z + t) has opposite sign foBy(z;t) compared to the forward solution as
predicted.

In Fig. 3.2 it is seen that the initial condition By(z;0) = 0 implies f (z) = g(z)
from Eq. (3.9). Using this initial condition the solver creates both the forward and
backwards propagating wave as expected.

3.2.2 Introducing a forward propagating laser pulse

Only a forward propagating wave solution is needed for further simulations. To
achieve this the initial condition E,(z;0) = By(z;0) is used so that Eq. (3.9) only
gives a forward propagating wavé (z). By Eq. (3.6) the discrete initial conditions
for a forward propagating wave read

o+ 1 t
Eeo1=fi! By = e

N

fos s (3.10)

for any function f (z), were Ex(z;t);By(z;t) = O for the time stepst < 0. Note
that this is only valid for inserting a pulse in vacuum since it depends on Eq. (3.9),
which says thatf (z t) propagates with the speed = 1. This is however not true
in a dispersive medium.

3.2.3 \Verifying the plasma dispersion

The plasma dispersion relation can be derived from the system of Eqgs. (2.21)-(2.24)
by assuming a preformed plasma. This means setting the electron density to be
constant in time ng(z;t) = ne! @ne = 0 for every spatial pointz. By considering
the di erent elds in temporal Fourier space a wave equation for thee - eld is found

as [App. J]

@+!12 ne Ex(z;!)=0; (3.11)
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which has solutions with a frequency dependent wave number

E(z;!)= E(O;!)e *®)z, k()= ! 12 ng (3.12)

The sign di erence ine *() corresponds to a forward propagating solution with ,
and a backwards propagating solution with+. In plasma units, found in App. E,
the plasma frequency is de ned asg = Ng,

q
k()= 12 12X (3.13)
Thus, for all modes with frequency, = !=2 , lower than the plasma frequency,

p = ! p=2 , the wave numberk(! ) becomes imaginary. These modes are evanescent
while modes withk(! ) 2 R are propagating modes. Eg. (3.13) is equivalent to
having! as a function ofk instead, as

L= K] 2; (3.14)

which is the plasma dispersion relation.

To be able to compare this analytic dispersion relation to the numerical disper-
sion relation in the code, the wave equation Eq. (3.12) is used. For two forward
propagating solutions that has propagated a lengtla, and z, Eqg. (3.12) read

Ex(zai!) = Ex(0;1)e M7y Ey(zy!1) = Ex(0;!)e H) 1

| Ex(z!) _ e k()2 za)- (3.15)
Ex(za;!)

The phase of the quotient between two temporal Fourier transforms of the electric
eld that has propagated a lengthz, and z, is a function of the dispersion relation
k(!) in Eq. (3.13).

By propagating a laser in a preformed plasma and then extracting (z;t) at the
two points z, and z, separated by the lengthzy = z, z,, as seen in Fig. 3.3.(a).
The error in the dispersion from the code, in comparison to the analytic dispersion,
is shown in Fig. 3.3.(b). In App. H. the convergence of the dispersion in the code
Is also shown to converge to the analytic solution. Note that for a plasma ionized
from a gas with atom densityn, = 2:7 10° m 3, gives! , 0:124<< 1, [App. K].
This gives a plasma dispersion relation, Eqg. (3.14) that is very close to the vacuum
dispersion

q —
L(k)= K2+12 l2i<<1l I I(k) Kk (3.16)
To observe a plasma dispersion relation that sharply di er from the vacuum relation,
the laser pulse is propagated through a preformed plasma with, = 8 10°* m 3

which corresponds td , 0:677.
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Figure 3.3: In (a) the setup for calculating the plasma dispersion relation in the code
by Eg. (3.15) is shown. Having a constante pro le in the simulation represents
a preformed plasma. TheE- eld is extracted at the black lines in the plasma
separated by the lengthzg = z, z,. In (b) the convergence of the total relative
error of the dispersion from the codé (k) when compared to the analytic dispersion
I a(k) dependency on the ner spatial resolutionz . The temporal resolution is set
to t =0:99z.

3.2.4 \Verifying the Current Equation

The current equation, Eq. (2.24), can be solved analytically by setting4(z;t) =
Ex(z) and ne(z;t) = ne(z) as constant in time. For a xed point in spacezy the
current equation is

@ (20;t) = eJ(20;t) + Ne(Z0)E(20);
which has the analytic solution

Ne(20) E (20)

e

J(z0;t) = Jo(zo)e '+ 1 e < ;

assuming a initial currentJ(zo;0) = Jo(zo). The di erence between the discrete
version and the analytic version is plotted in Fig. 3.4.

Figure 3.4: The di erence between the solution to Eq. (2.23) and the solution to
the same discretized Eq. (3.7) are plotted. The same parameters are used in both
solutions.
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3.2.5 \Validity of Code in Calculating the Electron Density

To validate the part of the code that calculates the electron density according to
Eg. (3.8) a simulation of a laser pulse that ionizes argon gas was made. The time
evolution of the process is considered in one point of space. This simulation is
compared to results presented in [14]. The laser pulse used is described by
|
!

E(t) = Epsin(l Lt)exp t; : (3.17)
0

where! | =2 c= and Eq = (21= o¢)**2. The intensity used islo =4 10“ W/cm?
and the wavelength is = 800 nm. Pulse duration is characterized byty = 50 fs.
The atom density was set ta, = 3 10'° cm 2 at the beginning. For the comparison
of ne, only the ionization equation (2.11) with a prescribed time-dependent electric
eld from Eq. (3.17) is considered.

Figure 3.5: Electron density,n., and the envelope of the pulse intensityl, as a
function of time. ne is normalized to the atom densityn, =3 10 m 3, att=0
and | is normalized tolo =4 10 Wm 2. The pulse duration is characterized by
to =50 fs.

In Fig. (3.5) the result is shown which demonstrates the same step-like increase of
the electron density as [14]. It is also seen that full ionization is reached, which also
applies to the simulation in [14].

3.2.6 Energy conservation

With normalized units according to App. E, the energy densityJ of the electro-
magnetic eld is

Ueu(zit)= 5 EXzi0)+ Bz - (3.18)
The total energy U, (t) at time t is the space-integral ofJgy, according to
12
UL(t) = 5 EZ(z;t)+ BJ(z;t) dz: (3.19)

Since the system described in Sec. (2.4) is one dimensiondl, is actually energy
per area.
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3. Numerical methods

The rate of change in the energy of the laser pulse is described by the Poynting
theorem [15]

@Uem (z;1) = @S,(z;t) + Ix(z; t)Ex(z;1); (3.20)

where Jx(z;t)Ex(z;t) is the rate of work done at charged particles by the eld
and @S,(z;t) is the energy ux. The Ponyting theorem is used here to calculate
the energy conservation in the simulation, in App. L, a expression for physically
interpreting Jy(z;t)Ex(z;t) is derived.

Because of the boundary conditions used in this thesis akg, = E. 4, = 0, Sec.
3.1.1, the integral over the energy ux forallz2 Z is zero. The loss of EM-energy

, Uem = Uss, is after a timet therefore
z,z

Uloss(t) Z@Sz(z; )+ Ex(z; )Ix(z; )dzd =

2.z

i} Ex(z; )Jx(z; )dzd: (3.21)

This energy is used to accelerate the electrons in the plasma and for energy to be
conserved in the modeU,,y = U + Uss Should be constant for all times. That is
z 4 1 z, !
Urotal (t) = EEf(z;t) + éByz(z;t) +  Ju(z; )Ex(z; )d dz= Uy (3.22)
0

z

where Uy is the initial energy of the system. Since the laser pulse initially is put
into vacuum, and therefore no current existl, is calculated asU, (0) according to
Eq. (3.19). Due to the Yee-scheme in Fig. 3.1 the numeric solution Bf(z;t) is
de ned at half a time-step beforeB(z;t) and J«(z;t) and the numeric solution of
By(z;1t) is de ned at half a space-step befor&,(z;t) and Jx(z;t). A mean value
in time is therefore used forE,(z;t) and a mean value in space foB,(z;t) in the
discretization of Egs. (3.19) and (3.22) according to

N|=

. 1 41 .
E- SE e b
1 .
Bk= E(BII(+%+ Bll( %)

The discretization of Eq. (3.22) becomes

0
X 1 i+l i1 1 . -
Uoa (1) 2 @(E*+ By *)°+ o(By, s + By 1)*
k
1
X i 1 i+% i %A
t Jl E(Ek + E, 2)A: (3.23)

i=0

To show that the energy is conserved in the model a simulation was made and
the energy calculated according to Eq. (3.23). The initial simulation window is
presented in Fig. 3.6 where the area marked with the dotted line is the atom
density of the slab of argon gas. The argon gas3® m long with additional ramps
that are about 10 m each. The atom densityny, is at most3 10?°°> m 3. Also the
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3. Numerical methods

initial pulse is shown as the solid line in Fig. 3.6. The pulse is the same as in Eq.
(3.17). The simulations were made for dierentz and t =0:9z.

Figure 3.6: The initial simulation window for simulations where energy conservation
was checked. At timet = 0 the pulse was put in vacuum and a length of argon gas
with atom density n,; was inserted betweerz = 300 and z = 900 with a linear ramp.

Figure 3.7: (a) Total energy of the simulation window U (t), normalized to the
initial energy, Uy, for a system consisting of a laser pulse propagating rstin vacuum,
then in argon gas-plasma, and then vacuum again. (b) Relative maximum error for
simulations with di erent z separated by0:01 units in the range 0:01 to 0:10.

The result of a simulation with z = 0:01and t = 0:009is shown in Fig. 3.7.(a)
where the total energy in the simulation window is plotted for all times. The energy

is seen to be conserved within a magnitude a0 ’. It is also seen that when the
pulse enters the argon at = 100 and leaves at = 600 there is a small but negligible
change in the energy. This is due to discontinuities in the shape of the argon gas.
When the pulse is inside the gas there is a very small decrease in the energy. This
is due to the lossy behavior of the model [App. L]. In Fig. 3.7.(b) it is shown that
the maximum error in energy conservation decreases with smaller.
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Modeling THz Emission in Gas
Plasmas

In this chapter, the THz emission in laser-induced gas-plasmas, based on the 1D
uid model equations presented in Sec. 2, is investigated. The solution of the
model equations is performed with the numerical scheme discussed in Sec. 3, and
results and analysis are presented. First, the focus will be on 1C-laser pulses, after
which 2C-laser pulses will be discussed. Throughout this chapter we are mainly
interested in the e ciency of the THz generating process and its dependence on
laser parameters. The parameters that produce the highest e ciency are then of
interest, as well as the extent at which the SSM described in Sec. 2.7 can be used
as a predictive tool for the response of the system.

4.1 Model setup and laser parameters

In the following, the numerical setup and laser parameters are described. The setup
for simulations with 1D uid model is described here.

Figure 4.1: A typical simulation set-up is shown. A forward propagating laser
pulse is inserted in space, Sec. 3.2.2, and the initial atom density pro le is setup.
The atom density pro le is modelled by an exponentially ramped pro leng(z) =
Nmax(1 € 12), whereNmex = 2:7 105 m 2, App. K. The time trace E(zo;t) is
sampled behind the plasma.

In Fig. 4.1, the simulation setup for the 1D uid model is shown. The pulse will be
analyzed after it has propagated through the plasma by extracting the time trace,
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4. Modeling THz Emission in Gas Plasmas

Ex(zo;t), at a speci c point, zq, in space. The boundaries of the simulation window
are considered perfect conductors, meaning that any signal reaching either end will
be re ected, see Sec. 3.1.1. When the signal reaches the plasma, a portion of it will
be re ected backwards. Since the boundary is a perfect conductor this re ection will,
after long enough time, again be re ected back towards the plasma. The simulation
box is therefore chosen large enough so that any re ections from the plasma are
unable to interfere with measurements.

4.1.1 Laser de nitions

In the following simulations, three dierent laser pulses are considered. Two 1C
laser pulses and one 2C laser pulse. The 1C laser pulses are de ned as
2
Egin(t) = ELsin(! Lt)e 5 ; (4.1)
t2

2t .
Ecos(t) = EL ! cos( . t) t—zsm(! L) e %6, (4.2)
0
q__
whereE_ = % is the amplitude of the pulse,! | is the laser frequency andg
is a characteristic duration of the pulse. The 2C-laser pulse consists of a FH with
frequency | = ! =2 and a SH with frequency2 | = ! | = according to

2 3
BT .
E()=E.4 1 sin(l t)e %+ sin(2 . t+ e %5; (4.3)

whereE = | % is the amplitude of the pulse g is the characteristic length of the
pulse, is the fraction of energy in the SH and is the relative phase between the
harmonics. Introducing a SH can create an asymmetry in the pulse which greatly
increases the THz generation as discussed in Sec. 2.6.

To reduce the dimensions needed to plot results, it is practical to introduce yields.
The THz yield YZ?, is de ned as the integral of the power spectrum for the time
trace of Ex(zo;t) over! =[0;2 30THz]. For SSM the yield Y55V is the power
spectrum of the source term integrated up to the samle, such that

1D ZZ 30 THz 2 SSM ZZ 30THz 5
Yia, = . E(zo;!) dl;, Yo' = . i(t)“dy (4.4)

where E(z;!) denotes the Fourier transform, de ned in App. M, of the E- eld.
To be able to compareYty, between di erent laser pulse parameters we de ne a
laser-to-terahertz e ciency 1y, for the full model and an excitation e ciency tn,
for the SSM, giving that
— YT1I-||Dz . — YTSHSZM.
THz — PL ’ THz — PLngti
whereP, is the integrated power spectrum for the initial laser used in the simulation,
z

(4.5)

P, = 11 EL() (4.6)

The excitation e ciency . for SSM in Eq. (4.5) is normalized byn2, since it is
to be independent ofng.
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4.2 Measurements, gures and analysis

In this section, results from simulations are presented and analyzed, starting with
the 1C laser pulses and continuing with the 2C laser pulse. Both results from the
SSM and the 1D uid model are presented and comared. Also comparison with the
theory establised in Sec. 2.6 is made.

4.2.1 One Color Pulses

The parameter to investigate for 1C ido. To this end we used the SSM to predict
which values ofty produce more THz radiation, the results are then followed up
with the 1D uid model.

Figure 4.2: (a) and (c) show the power spectrum of the source, and (b) and (d) the
laser for the 1C pulse de ned by Eqg. (4.1). The pulse has a power spectrum that
vanish for physically meaningful values ofj.
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Figure 4.3: (a) and (c) show the power spectrum of a pulse that has propagated
through 10 m of argon gas, computed by the 1D Solver. (b) and (d) show the power
spectrum for the initial pulse. The atom density of the gas was, =3 107° m 3,
and had a gas pro le with an exponential ramp described in Fig. 4.1. The resolution
was set todz = 0:1 and dt = 0:09.

Power spectrum of the source term using the SSM is presented in Fig. 4.2 for the
1C laser pulse de ned by Eq. (4.1). The pulse has THz frequency components only
for very low values ofty, below1 fs, seen in Fig. 4.2.(b). However, such a laser eld
already contains signi cant THz frequency components, see Fig. 4.2.(d).

The spectrum of the corresponding electric elds for the 1C laser pulse is also shown.
Only when the laser itself contains THz frequencies can they be observed in the
source term. The only meaningful amount of excitation in this spectrum is gained
with a very low value for to.

Based on the results of the SSM, short laser pulses were investigated using the 1D
uid model. The results are presented in Fig. 4.3. At large the ndings by the 1D
uid model match those found by the SSM, both indicating that if there isTHz
radiation to be had from a 1C pulse, very small values df need to be used. As
seen in Fig. 4.3.(b) there is nd’Hz for > 30 THz contrast to the results from the
SSM shown in Fig. 4.2.(b). This di erence is due to propagation, which the SSM
can not take into account.

The results from both the SSM and the 1D uid model show that a 1C laser pulse
IS not very e cient in generating THz radiation. This result is in agreement with

the discussed mechanism of THz generation, in Sec. 2.6. However, some THz yield
Is seen for very shorty,. These short laser pulse are hard to create practically and
thus the 1C laser pulse is not useful for creating THz radiation.
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4.2.2 Two Color Pulses

The investigated parameters for the 2C-laser pulse given by Eq. (4.3) are the fraction
of energy in the second harmonic, the relative phase , the laser intensity |  and
the characteristic pulse durationtg.

4.2.2.1 Investigation of Laser Parameters of the fraction of energy in
SH and the relative phase

Using SSM, the excitation e ciency 1y, was calculated for sweeps over the laser
parameters and with di erent values of 15 and the samety = 15 fs. The degree
of ionization ng=n, of the nal electron density was also calculated. The result is
presented in Fig. 4.4 left and right column respectively.

Two di erent regimes are distinguished. One where the ionization degree is nearly
constant for all and and full single ionization is reached, seen in (f). For this
regime, the maximum excitation is achieved around 0:3, 0; . In the other
regime, the ionization degree is varying over di erent laser parameters, seen in the
right column except (f). Here, the maximum ofne=n,; is achieved fora  0:45.

The same parameter sweeps overand have been made with the 1D uid model,
for a constantty = 15 fs. The laser pulse is propagated through & m long argon
gas-plasma, and then the time tracd= (zo;t) is sampled at another3 m behind
the plasma. The electron-ion collision frequency for the 1D uid model was set to

. = 100 fs ! and the electron density ton, = 2:7 10> m 3. The results for the
1D uid model are presented in Fig. 4.5 and shows a general agreement with the
results for SSM. The 2C laser pulse is propagated through3a m long gas plasma.
Pulse duration istg = 15fs, with resolution set todz = 0:1, dt = 0:099

4.2.2.2 Discussing the trends seen for the fraction of energy in the SH
and the relative phase

The trend of the optimal parameters for di erent intensities are explained byne.
Consider the intensity regime where the ionization is dependent onand

For these intensities, the optimal laser parameters for the highestyy, and 14,
tends towards the optimal for ionizing the gas. The laser pulse with this parameter
has a higher peak amplitude, which is bene cial for ionization. Such a pulse is
presented in Fig. 4.6.(a). In addition, the net electron drift, discussed in Sec. 2.6,
for near-zero frequency currents is also a ected by intensity. For lower intensities, the
results indicate that the net electron drift is negligible compared to the ionization as
the optimal parameters tend more strongly toward those that maximize ionization.

The same e ect is were the optimal parameters for the e ciency tends towards

0:45 is seen for the higher intensities aswell. The same reasoning that the
down conversion can be neglected can not be applied here since it increases with
intensity. But for the intensities in the regime where the ionization is nearly constant
for di erent laser parameters, the optimal parameters instead shape the laser pulse
such that the down-conversion of frequencies is maximized. The laser pulse with
these parameters is presented in (b).
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Figure 4.4: In the left column the excitation e ciency 4, for pulses with dif-
ferent intensities | made with the SSM are shown. In the right column are the
corresponding ionization degrees.=ny;.

28



	Introduction
	Physical Background
	Maxwell's Equations
	The Physics of the Drude model
	The Physics of the Plasma Generation
	Full model in plasma units
	Valid Laser Intensities and Frequencies
	Frequency down conversion
	Simple source model, SSM

	Numerical methods
	Discretization using FDTD
	Discretizing the Maxwell curl equations
	Discretizing the ionzation rate equation and the current equation.

	Validating the numerical scheme
	Principle for testing the Maxwell solver in vacuum
	Introducing a forward propagating laser pulse
	Verifying the plasma dispersion
	Verifying the Current Equation
	Validity of Code in Calculating the Electron Density
	Energy conservation


	Modeling THz Emission in Gas Plasmas
	Model setup and laser parameters
	Laser definitions

	Measurements, figures and analysis
	One Color Pulses
	Two Color Pulses
	Investigation of Laser Parameters of the fraction of energy in SH and the relative phase
	Discussing the trends seen for the fraction of energy in the SH and the relative phase
	Investigation of laser intensity for the optimal THz-generating parameters
	Investigation of pulse duration

	Comparing with theory


	Summary & Conclusion
	Appendices
	Neglecting magnetic term in the Lorentz force
	Drude Fluid Model Derivation
	Details of Atomic Quantities Eat, Iat and at
	Ionization energies of argon gas
	Plasma Units
	Electron velocity
	Ionization Current Mechanism
	Convergence of the code
	Comparing to published results
	Plasma dispersion relation
	Atom density in the gas
	Energy considerations
	Fourier transform



