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Abstract
In tokamaks, highly relativistic electrons known as runaway electrons may be cre-
ated, for example during disruptions when instabilities rapidly grow and cause op-
eration to abruptly terminate. If control of the runaway beam is lost, the electrons
can collide with the device wall and inflict severe damage. Therefore, it is of great
importance to understand the processes that give rise to and govern the behaviour
of these particles. One of the best ways to learn about the phase-space distribution
of runaway electrons in experiments is to measure the synchrotron radiation emit-
ted by them, often in the visible or infrared wavelength ranges, by making camera
images or measuring the spectrum. Synchrotron radiation is emitted almost entirely
in the forward direction of the electron, contrary to how light is usually emitted by
most other light sources, and because of this electrons must be moving towards the
observer in order to be seen. As a result, most electrons are invisible to the observer
most of the time, and the synchrotron image does not reveal the full runaway beam,
rather showing an abstract spot of light that can take on many different shapes. The
sharp beaming in the forward direction of synchrotron radiation however puts an
extra constraint on the image which allows the full velocity vector of the runaways
to be inferred from the image.

In this thesis the numerical tool SOFT (for Synchrotron-detecting Orbit Follow-
ing Toolkit), along with the theory on which it builds, is presented. With SOFT,
synchrotron images from runaway populations that are arbitrarily distributed in
phase-space can be simulated, taking various kinds of geometric effects (magnetic
field geometry, camera placement, viewing direction etc.) into account. The ef-
fects on the image due to isolated variations in energy, pitch angle, minor radius
and camera location are investigated and analysed. Synchrotron images simulated
with analytical avalanche distributions of runaways are interpreted in relation to,
and compared with, synchrotron images from mono-energetic runaway populations.
All parameters are found to have distinct effects on the synchrotron spot, and it is
shown that the synchrotron images due to full distributions of runaway electrons
can partly be understood as dominated by particles of a particular energy and pitch
angle.
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1
Introduction

One of the greatest challenges of our time is that posed by global warming, caused by
the dramatically increased emission of greenhouse gases over the past century. The
science on the subject is clear [1], and it is necessary to quickly transition towards
renewable energy sources that are both free of greenhouse gases, long-term sustain-
able and economically viable. Currently, no such source of energy (that could be
deployed on a large scale) exists [2], but much e�ort is put into developing suitable
technologies. One of the most promising technologies under active development,
matching all the aforementioned criteria, is that of controlled nuclear fusion [3, 4].
In its naturally occurring form, nuclear fusion has already been the singly most im-
portant source of energy to the Earth for billions of years, as it is by this mechanism
that our Sun shines and provides the necessities for life. Recreating the conditions
of the Sun here on Earth, with temperatures of several million kelvin and strong
pressures, has proven extremely di�cult, since the strong gravitational �eld con�n-
ing the fusion fuel in the Sun is not available on Earth. Instead, alternative methods
of con�nement must be used, and of the currently investigated methods, magnetic
con�nement fusion is considered one of the most realistic options [5].

Magnetic con�nement fusion is based on the behaviour of matter at the hundreds-
of-millions kelvin temperatures necessary for fusion. At these high temperatures the
matter is in the plasma state [4], typically called the �fourth state of matter�, in
addition to the solid, liquid and gaseous states. In the plasma state, electrons are
no longer bound to the atomic nuclei, and so the plasma consists of free charged
particles. Because of this, a plasma is susceptible to the in�uence of electric and
magnetic �elds, which for example allows it to be con�ned using a magnetic �eld. It
also means that particles will rearrange in order to shield out any external electric
�elds, and plasmas are characterized by being able to shield out such �elds over
relatively short distances [6]. As an additional consequence of the charged particles
moving freely, interactions between particles in a plasma are long-range and con-
tinuous, with the collective behaviour of the plasma being of greater importance
than individual Coulomb interactions for the overall physics, unlike in other matter
where particles typically interact through �hard� Coulomb collisions.

There are many ways to magnetically con�ne a plasma, but as a consequence of
the so-called �Hairy-ball theorem� [7], the only magnetic �eld con�guration able to
avoid signi�cant losses is the toroidal con�guration. By placing magnetic �eld coils
around the torus and running a current through them, a magnetic �eld directed
everywhere in the toroidal direction (see Fig. 1.1) will appear. A charged particle
moving through this magnetic �eld will be constrained by the Lorentz force to move
along the magnetic �eld lines, but due to the curvature of the magnetic �eld the
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